Loading…
On Gravity, Specialization and Intra-industry Trade
Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this c...
Saved in:
Published in: | Review of international economics 2011-08, Vol.19 (3), p.494-508 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533 |
---|---|
cites | cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533 |
container_end_page | 508 |
container_issue | 3 |
container_start_page | 494 |
container_title | Review of international economics |
container_volume | 19 |
creator | Song, E. Young |
description | Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model. |
doi_str_mv | 10.1111/j.1467-9396.2011.00961.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1013741449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1013741449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</originalsourceid><addsrcrecordid>eNqNUMGO0zAQtRBIlIV_iDhxIMGOYzs-cEDVbulqRVdQtMfRJHWES5oUO-02fD3TDeqBE5aexxq_9zx-jCWCZ4LWh20mCm1SK63Oci5ExrnVIjs9Y7PLxXM2o6ZKjTL6JXsV45ZzoUrLZ0yuumQR8OiH8X3ybe9qj63_jYPvuwS7TbLshoCp7zaHOIQxWQfcuNfsRYNtdG_-1iv2_eZ6Pf-c3q0Wy_mnu7RWVojU2SYv6JFKoJZYGYOoUTRYmjx3zpWq0k7ntdNa6VrUWnKlsLQb7SrZVErKK_Zu8t2H_tfBxQF2PtaubbFz_SGC4EKaQhSFJerbf6jb_hA6mg5KUyrJ6cNEKidSHfoYg2tgH_wOw0hOcA4TtnDODM6ZwTlMeAoTTiS9naTBUUYXXdVicEdPnSNIFJa2kfAklegJkrAnFLYAxUv4MezI7ONk9uhbN_73EPB1tbymE-nTSe_j4E4XPYafoI00Ch6-LODm4X4t7ucKbuUfb2OhZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878530001</pqid></control><display><type>article</type><title>On Gravity, Specialization and Intra-industry Trade</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>EBSCOhost Econlit with Full Text</source><creator>Song, E. Young</creator><creatorcontrib>Song, E. Young</creatorcontrib><description>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</description><identifier>ISSN: 0965-7576</identifier><identifier>EISSN: 1467-9396</identifier><identifier>DOI: 10.1111/j.1467-9396.2011.00961.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bilateral economic relations ; Competition ; Economic theory ; Exports ; Gravity equations ; International trade ; Mathematical analysis ; Specialization ; Studies ; Trade flows</subject><ispartof>Review of international economics, 2011-08, Vol.19 (3), p.494-508</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</citedby><cites>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blareviec/v_3a19_3ay_3a2011_3ai_3a3_3ap_3a494-508.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, E. Young</creatorcontrib><title>On Gravity, Specialization and Intra-industry Trade</title><title>Review of international economics</title><description>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</description><subject>Bilateral economic relations</subject><subject>Competition</subject><subject>Economic theory</subject><subject>Exports</subject><subject>Gravity equations</subject><subject>International trade</subject><subject>Mathematical analysis</subject><subject>Specialization</subject><subject>Studies</subject><subject>Trade flows</subject><issn>0965-7576</issn><issn>1467-9396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNUMGO0zAQtRBIlIV_iDhxIMGOYzs-cEDVbulqRVdQtMfRJHWES5oUO-02fD3TDeqBE5aexxq_9zx-jCWCZ4LWh20mCm1SK63Oci5ExrnVIjs9Y7PLxXM2o6ZKjTL6JXsV45ZzoUrLZ0yuumQR8OiH8X3ybe9qj63_jYPvuwS7TbLshoCp7zaHOIQxWQfcuNfsRYNtdG_-1iv2_eZ6Pf-c3q0Wy_mnu7RWVojU2SYv6JFKoJZYGYOoUTRYmjx3zpWq0k7ntdNa6VrUWnKlsLQb7SrZVErKK_Zu8t2H_tfBxQF2PtaubbFz_SGC4EKaQhSFJerbf6jb_hA6mg5KUyrJ6cNEKidSHfoYg2tgH_wOw0hOcA4TtnDODM6ZwTlMeAoTTiS9naTBUUYXXdVicEdPnSNIFJa2kfAklegJkrAnFLYAxUv4MezI7ONk9uhbN_73EPB1tbymE-nTSe_j4E4XPYafoI00Ch6-LODm4X4t7ucKbuUfb2OhZg</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Song, E. Young</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201108</creationdate><title>On Gravity, Specialization and Intra-industry Trade</title><author>Song, E. Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bilateral economic relations</topic><topic>Competition</topic><topic>Economic theory</topic><topic>Exports</topic><topic>Gravity equations</topic><topic>International trade</topic><topic>Mathematical analysis</topic><topic>Specialization</topic><topic>Studies</topic><topic>Trade flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, E. Young</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Review of international economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, E. Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Gravity, Specialization and Intra-industry Trade</atitle><jtitle>Review of international economics</jtitle><date>2011-08</date><risdate>2011</risdate><volume>19</volume><issue>3</issue><spage>494</spage><epage>508</epage><pages>494-508</pages><issn>0965-7576</issn><eissn>1467-9396</eissn><abstract>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9396.2011.00961.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-7576 |
ispartof | Review of international economics, 2011-08, Vol.19 (3), p.494-508 |
issn | 0965-7576 1467-9396 |
language | eng |
recordid | cdi_proquest_miscellaneous_1013741449 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Wiley; EBSCOhost Econlit with Full Text |
subjects | Bilateral economic relations Competition Economic theory Exports Gravity equations International trade Mathematical analysis Specialization Studies Trade flows |
title | On Gravity, Specialization and Intra-industry Trade |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Gravity,%20Specialization%20and%20Intra-industry%20Trade&rft.jtitle=Review%20of%20international%20economics&rft.au=Song,%20E.%20Young&rft.date=2011-08&rft.volume=19&rft.issue=3&rft.spage=494&rft.epage=508&rft.pages=494-508&rft.issn=0965-7576&rft.eissn=1467-9396&rft_id=info:doi/10.1111/j.1467-9396.2011.00961.x&rft_dat=%3Cproquest_cross%3E1013741449%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=878530001&rft_id=info:pmid/&rfr_iscdi=true |