Loading…

On Gravity, Specialization and Intra-industry Trade

Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this c...

Full description

Saved in:
Bibliographic Details
Published in:Review of international economics 2011-08, Vol.19 (3), p.494-508
Main Author: Song, E. Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533
cites cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533
container_end_page 508
container_issue 3
container_start_page 494
container_title Review of international economics
container_volume 19
creator Song, E. Young
description Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.
doi_str_mv 10.1111/j.1467-9396.2011.00961.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1013741449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1013741449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</originalsourceid><addsrcrecordid>eNqNUMGO0zAQtRBIlIV_iDhxIMGOYzs-cEDVbulqRVdQtMfRJHWES5oUO-02fD3TDeqBE5aexxq_9zx-jCWCZ4LWh20mCm1SK63Oci5ExrnVIjs9Y7PLxXM2o6ZKjTL6JXsV45ZzoUrLZ0yuumQR8OiH8X3ybe9qj63_jYPvuwS7TbLshoCp7zaHOIQxWQfcuNfsRYNtdG_-1iv2_eZ6Pf-c3q0Wy_mnu7RWVojU2SYv6JFKoJZYGYOoUTRYmjx3zpWq0k7ntdNa6VrUWnKlsLQb7SrZVErKK_Zu8t2H_tfBxQF2PtaubbFz_SGC4EKaQhSFJerbf6jb_hA6mg5KUyrJ6cNEKidSHfoYg2tgH_wOw0hOcA4TtnDODM6ZwTlMeAoTTiS9naTBUUYXXdVicEdPnSNIFJa2kfAklegJkrAnFLYAxUv4MezI7ONk9uhbN_73EPB1tbymE-nTSe_j4E4XPYafoI00Ch6-LODm4X4t7ucKbuUfb2OhZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878530001</pqid></control><display><type>article</type><title>On Gravity, Specialization and Intra-industry Trade</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>EBSCOhost Econlit with Full Text</source><creator>Song, E. Young</creator><creatorcontrib>Song, E. Young</creatorcontrib><description>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</description><identifier>ISSN: 0965-7576</identifier><identifier>EISSN: 1467-9396</identifier><identifier>DOI: 10.1111/j.1467-9396.2011.00961.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bilateral economic relations ; Competition ; Economic theory ; Exports ; Gravity equations ; International trade ; Mathematical analysis ; Specialization ; Studies ; Trade flows</subject><ispartof>Review of international economics, 2011-08, Vol.19 (3), p.494-508</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</citedby><cites>FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blareviec/v_3a19_3ay_3a2011_3ai_3a3_3ap_3a494-508.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, E. Young</creatorcontrib><title>On Gravity, Specialization and Intra-industry Trade</title><title>Review of international economics</title><description>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</description><subject>Bilateral economic relations</subject><subject>Competition</subject><subject>Economic theory</subject><subject>Exports</subject><subject>Gravity equations</subject><subject>International trade</subject><subject>Mathematical analysis</subject><subject>Specialization</subject><subject>Studies</subject><subject>Trade flows</subject><issn>0965-7576</issn><issn>1467-9396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNUMGO0zAQtRBIlIV_iDhxIMGOYzs-cEDVbulqRVdQtMfRJHWES5oUO-02fD3TDeqBE5aexxq_9zx-jCWCZ4LWh20mCm1SK63Oci5ExrnVIjs9Y7PLxXM2o6ZKjTL6JXsV45ZzoUrLZ0yuumQR8OiH8X3ybe9qj63_jYPvuwS7TbLshoCp7zaHOIQxWQfcuNfsRYNtdG_-1iv2_eZ6Pf-c3q0Wy_mnu7RWVojU2SYv6JFKoJZYGYOoUTRYmjx3zpWq0k7ntdNa6VrUWnKlsLQb7SrZVErKK_Zu8t2H_tfBxQF2PtaubbFz_SGC4EKaQhSFJerbf6jb_hA6mg5KUyrJ6cNEKidSHfoYg2tgH_wOw0hOcA4TtnDODM6ZwTlMeAoTTiS9naTBUUYXXdVicEdPnSNIFJa2kfAklegJkrAnFLYAxUv4MezI7ONk9uhbN_73EPB1tbymE-nTSe_j4E4XPYafoI00Ch6-LODm4X4t7ucKbuUfb2OhZg</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Song, E. Young</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201108</creationdate><title>On Gravity, Specialization and Intra-industry Trade</title><author>Song, E. Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bilateral economic relations</topic><topic>Competition</topic><topic>Economic theory</topic><topic>Exports</topic><topic>Gravity equations</topic><topic>International trade</topic><topic>Mathematical analysis</topic><topic>Specialization</topic><topic>Studies</topic><topic>Trade flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, E. Young</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Review of international economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, E. Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Gravity, Specialization and Intra-industry Trade</atitle><jtitle>Review of international economics</jtitle><date>2011-08</date><risdate>2011</risdate><volume>19</volume><issue>3</issue><spage>494</spage><epage>508</epage><pages>494-508</pages><issn>0965-7576</issn><eissn>1467-9396</eissn><abstract>Contrary to the popular belief, specialization is not necessary for gravity equations. This paper shows that the simple gravity equation holds if and only if the market share of an exporting country is constant across all importing countries. Specialization is just one special case satisfying this condition. The constant‐share condition can hold in a variety of situations where multiple producers compete with a homogeneous good. Further, this paper shows that the ratio of bilateral trade to the product of partner incomes is increasing in the extent of specialization and in the intensity of intra‐industry trade. Since the relationship is not model‐specific, the correlations among these variables do not support any specific model.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9396.2011.00961.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-7576
ispartof Review of international economics, 2011-08, Vol.19 (3), p.494-508
issn 0965-7576
1467-9396
language eng
recordid cdi_proquest_miscellaneous_1013741449
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Wiley; EBSCOhost Econlit with Full Text
subjects Bilateral economic relations
Competition
Economic theory
Exports
Gravity equations
International trade
Mathematical analysis
Specialization
Studies
Trade flows
title On Gravity, Specialization and Intra-industry Trade
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Gravity,%20Specialization%20and%20Intra-industry%20Trade&rft.jtitle=Review%20of%20international%20economics&rft.au=Song,%20E.%20Young&rft.date=2011-08&rft.volume=19&rft.issue=3&rft.spage=494&rft.epage=508&rft.pages=494-508&rft.issn=0965-7576&rft.eissn=1467-9396&rft_id=info:doi/10.1111/j.1467-9396.2011.00961.x&rft_dat=%3Cproquest_cross%3E1013741449%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5911-e9f24890b1a63ab77aa6a1fa8722eee85b6e62ce6656c1c63055a89d6eb3fb533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=878530001&rft_id=info:pmid/&rfr_iscdi=true