Loading…

Bayesian adaptive clinical trials: a dream for statisticians only?

Adaptive or ‘flexible’ designs have emerged, mostly within frequentist frameworks, as an effective way to speed up the therapeutic evaluation process. Because of their flexibility, Bayesian methods have also been proposed for Phase I through Phase III adaptive trials; however, it has been reported t...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2012-05, Vol.31 (11-12), p.1002-1013
Main Author: Chevret, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adaptive or ‘flexible’ designs have emerged, mostly within frequentist frameworks, as an effective way to speed up the therapeutic evaluation process. Because of their flexibility, Bayesian methods have also been proposed for Phase I through Phase III adaptive trials; however, it has been reported that they are poorly used in practice. We aim to describe the international scientific production of Bayesian clinical trials by investigating the actual development and use of Bayesian ‘adaptive’ methods in the setting of clinical trials. A bibliometric study was conducted using the PubMed and Science Citation Index‐Expanded databases. Most of the references found were biostatistical papers from various teams around the world. Most of the authors were from the US, and a large proportion was from the MD Anderson Cancer Center (University of Texas, Houston, TX). The spread and use of these articles depended heavily on their topic, with 3.1% of the biostatistical articles accumulating at least 25 citations within 5 years of their publication compared with 15% of the reviews and 32% of the clinical articles. We also examined the reasons for the limited use of Bayesian adaptive design methods in clinical trials and the areas of current and future research to address these challenges. Efforts to promote Bayesian approaches among statisticians and clinicians appear necessary. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.4363