Loading…

Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization

Surfactants bearing imidazolium cations represent a new class of building blocks in molecular self-assembly. These imidazolium-based cationic surfactants can exhibit various morphologies during phase transformations. In this work, we studied the self-assembly and phase behavior of 1-hexadecyl-3-meth...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2012-05, Vol.28 (19), p.7350-7359
Main Authors: Wu, Fu-Gen, Yu, Ji-Sheng, Sun, Shu-Feng, Sun, Hai-Yuan, Luo, Jun-Jie, Yu, Zhi-Wu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3
cites cdi_FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3
container_end_page 7359
container_issue 19
container_start_page 7350
container_title Langmuir
container_volume 28
creator Wu, Fu-Gen
Yu, Ji-Sheng
Sun, Shu-Feng
Sun, Hai-Yuan
Luo, Jun-Jie
Yu, Zhi-Wu
description Surfactants bearing imidazolium cations represent a new class of building blocks in molecular self-assembly. These imidazolium-based cationic surfactants can exhibit various morphologies during phase transformations. In this work, we studied the self-assembly and phase behavior of 1-hexadecyl-3-methylimidazolium chloride (C16mimCl) aqueous dispersions (0.5–10 wt %) by using isothermal titration calorimetry, differential scanning calorimetry, synchrotron small- and wide-angle X-ray scattering, freeze–fracture electron microscopy, optical microscopy, electrical conductance, and Fourier transform infrared spectroscopy. It was found that C16mimCl in aqueous solutions can form two different crystalline phases. At higher C16mimCl concentrations (>6 wt %), the initial spherical micelles convert directly to the stable crystalline phase upon cooling. At lower concentrations (0.5 or 1 wt %), the micelles first convert to a metastable crystalline phase upon cooling and then transform to the stable crystalline phase upon further incubation at low temperature. The electrical conductance measurement reveals that the two crystalline phases have similar surface charge densities and surface curvatures. Besides, the microscopic and spectroscopic investigations of the two crystalline phases suggest that the metastable crystalline phase has preassembled morphology and a preordered submolecular packing state that contribute to the final stable crystalline structure. The formation of a preordered structure prior to the final crystalline state deepens our understanding of the crystallization mechanisms of common surfactants and amphiphilic ionic liquids and should thus be widely recognized and explored.
doi_str_mv 10.1021/la300739x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1013918336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1013918336</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3</originalsourceid><addsrcrecordid>eNpt0DtPwzAUBWALgWgpDPwBlAUJhoAfsR2PUPGoVKlDYY4cPypXSVzsRND-etIHnZju8p0j3QPANYIPCGL0WEkCISfi5wQMEcUwpTnmp2AIeUZSnjEyABcxLiGEgmTiHAwwpoRjmg1BOW_N6ttFk8yCNsE1i8TbZFI7LTe-cl2dPstodDKWrfONU8m8C1aqVjZtTHS3C4x9L5tFOml0p7Y2rGMrq8ptdqFLcGZlFc3V4Y7A5-vLx_g9nc7eJuOnaSoJom2qMLRKSA2ZIYyXuRaWMiIMZxhyTATB1AqWMWRIrmzOES0lZyW2pYZKIUtG4G7fuwr-qzOxLWoXlakq2RjfxQJBRATKCWE9vd9TFXyMwdhiFVwtw7pHxXbS4jhpb28OtV1ZG32Ufxv24HYPpIrF0neh6b_8p-gXggV-LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013918336</pqid></control><display><type>article</type><title>Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Fu-Gen ; Yu, Ji-Sheng ; Sun, Shu-Feng ; Sun, Hai-Yuan ; Luo, Jun-Jie ; Yu, Zhi-Wu</creator><creatorcontrib>Wu, Fu-Gen ; Yu, Ji-Sheng ; Sun, Shu-Feng ; Sun, Hai-Yuan ; Luo, Jun-Jie ; Yu, Zhi-Wu</creatorcontrib><description>Surfactants bearing imidazolium cations represent a new class of building blocks in molecular self-assembly. These imidazolium-based cationic surfactants can exhibit various morphologies during phase transformations. In this work, we studied the self-assembly and phase behavior of 1-hexadecyl-3-methylimidazolium chloride (C16mimCl) aqueous dispersions (0.5–10 wt %) by using isothermal titration calorimetry, differential scanning calorimetry, synchrotron small- and wide-angle X-ray scattering, freeze–fracture electron microscopy, optical microscopy, electrical conductance, and Fourier transform infrared spectroscopy. It was found that C16mimCl in aqueous solutions can form two different crystalline phases. At higher C16mimCl concentrations (&gt;6 wt %), the initial spherical micelles convert directly to the stable crystalline phase upon cooling. At lower concentrations (0.5 or 1 wt %), the micelles first convert to a metastable crystalline phase upon cooling and then transform to the stable crystalline phase upon further incubation at low temperature. The electrical conductance measurement reveals that the two crystalline phases have similar surface charge densities and surface curvatures. Besides, the microscopic and spectroscopic investigations of the two crystalline phases suggest that the metastable crystalline phase has preassembled morphology and a preordered submolecular packing state that contribute to the final stable crystalline structure. The formation of a preordered structure prior to the final crystalline state deepens our understanding of the crystallization mechanisms of common surfactants and amphiphilic ionic liquids and should thus be widely recognized and explored.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la300739x</identifier><identifier>PMID: 22537254</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cations - chemistry ; Crystallization - methods ; Electric Conductivity ; Micelles ; Microscopy, Electron ; Surface-Active Agents - chemistry</subject><ispartof>Langmuir, 2012-05, Vol.28 (19), p.7350-7359</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3</citedby><cites>FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22537254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fu-Gen</creatorcontrib><creatorcontrib>Yu, Ji-Sheng</creatorcontrib><creatorcontrib>Sun, Shu-Feng</creatorcontrib><creatorcontrib>Sun, Hai-Yuan</creatorcontrib><creatorcontrib>Luo, Jun-Jie</creatorcontrib><creatorcontrib>Yu, Zhi-Wu</creatorcontrib><title>Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Surfactants bearing imidazolium cations represent a new class of building blocks in molecular self-assembly. These imidazolium-based cationic surfactants can exhibit various morphologies during phase transformations. In this work, we studied the self-assembly and phase behavior of 1-hexadecyl-3-methylimidazolium chloride (C16mimCl) aqueous dispersions (0.5–10 wt %) by using isothermal titration calorimetry, differential scanning calorimetry, synchrotron small- and wide-angle X-ray scattering, freeze–fracture electron microscopy, optical microscopy, electrical conductance, and Fourier transform infrared spectroscopy. It was found that C16mimCl in aqueous solutions can form two different crystalline phases. At higher C16mimCl concentrations (&gt;6 wt %), the initial spherical micelles convert directly to the stable crystalline phase upon cooling. At lower concentrations (0.5 or 1 wt %), the micelles first convert to a metastable crystalline phase upon cooling and then transform to the stable crystalline phase upon further incubation at low temperature. The electrical conductance measurement reveals that the two crystalline phases have similar surface charge densities and surface curvatures. Besides, the microscopic and spectroscopic investigations of the two crystalline phases suggest that the metastable crystalline phase has preassembled morphology and a preordered submolecular packing state that contribute to the final stable crystalline structure. The formation of a preordered structure prior to the final crystalline state deepens our understanding of the crystallization mechanisms of common surfactants and amphiphilic ionic liquids and should thus be widely recognized and explored.</description><subject>Cations - chemistry</subject><subject>Crystallization - methods</subject><subject>Electric Conductivity</subject><subject>Micelles</subject><subject>Microscopy, Electron</subject><subject>Surface-Active Agents - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0DtPwzAUBWALgWgpDPwBlAUJhoAfsR2PUPGoVKlDYY4cPypXSVzsRND-etIHnZju8p0j3QPANYIPCGL0WEkCISfi5wQMEcUwpTnmp2AIeUZSnjEyABcxLiGEgmTiHAwwpoRjmg1BOW_N6ttFk8yCNsE1i8TbZFI7LTe-cl2dPstodDKWrfONU8m8C1aqVjZtTHS3C4x9L5tFOml0p7Y2rGMrq8ptdqFLcGZlFc3V4Y7A5-vLx_g9nc7eJuOnaSoJom2qMLRKSA2ZIYyXuRaWMiIMZxhyTATB1AqWMWRIrmzOES0lZyW2pYZKIUtG4G7fuwr-qzOxLWoXlakq2RjfxQJBRATKCWE9vd9TFXyMwdhiFVwtw7pHxXbS4jhpb28OtV1ZG32Ufxv24HYPpIrF0neh6b_8p-gXggV-LA</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Wu, Fu-Gen</creator><creator>Yu, Ji-Sheng</creator><creator>Sun, Shu-Feng</creator><creator>Sun, Hai-Yuan</creator><creator>Luo, Jun-Jie</creator><creator>Yu, Zhi-Wu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120515</creationdate><title>Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization</title><author>Wu, Fu-Gen ; Yu, Ji-Sheng ; Sun, Shu-Feng ; Sun, Hai-Yuan ; Luo, Jun-Jie ; Yu, Zhi-Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cations - chemistry</topic><topic>Crystallization - methods</topic><topic>Electric Conductivity</topic><topic>Micelles</topic><topic>Microscopy, Electron</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fu-Gen</creatorcontrib><creatorcontrib>Yu, Ji-Sheng</creatorcontrib><creatorcontrib>Sun, Shu-Feng</creatorcontrib><creatorcontrib>Sun, Hai-Yuan</creatorcontrib><creatorcontrib>Luo, Jun-Jie</creatorcontrib><creatorcontrib>Yu, Zhi-Wu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fu-Gen</au><au>Yu, Ji-Sheng</au><au>Sun, Shu-Feng</au><au>Sun, Hai-Yuan</au><au>Luo, Jun-Jie</au><au>Yu, Zhi-Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>28</volume><issue>19</issue><spage>7350</spage><epage>7359</epage><pages>7350-7359</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Surfactants bearing imidazolium cations represent a new class of building blocks in molecular self-assembly. These imidazolium-based cationic surfactants can exhibit various morphologies during phase transformations. In this work, we studied the self-assembly and phase behavior of 1-hexadecyl-3-methylimidazolium chloride (C16mimCl) aqueous dispersions (0.5–10 wt %) by using isothermal titration calorimetry, differential scanning calorimetry, synchrotron small- and wide-angle X-ray scattering, freeze–fracture electron microscopy, optical microscopy, electrical conductance, and Fourier transform infrared spectroscopy. It was found that C16mimCl in aqueous solutions can form two different crystalline phases. At higher C16mimCl concentrations (&gt;6 wt %), the initial spherical micelles convert directly to the stable crystalline phase upon cooling. At lower concentrations (0.5 or 1 wt %), the micelles first convert to a metastable crystalline phase upon cooling and then transform to the stable crystalline phase upon further incubation at low temperature. The electrical conductance measurement reveals that the two crystalline phases have similar surface charge densities and surface curvatures. Besides, the microscopic and spectroscopic investigations of the two crystalline phases suggest that the metastable crystalline phase has preassembled morphology and a preordered submolecular packing state that contribute to the final stable crystalline structure. The formation of a preordered structure prior to the final crystalline state deepens our understanding of the crystallization mechanisms of common surfactants and amphiphilic ionic liquids and should thus be widely recognized and explored.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22537254</pmid><doi>10.1021/la300739x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-05, Vol.28 (19), p.7350-7359
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1013918336
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cations - chemistry
Crystallization - methods
Electric Conductivity
Micelles
Microscopy, Electron
Surface-Active Agents - chemistry
title Stepwise Ordering of Imidazolium-Based Cationic Surfactants during Cooling-Induced Crystallization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stepwise%20Ordering%20of%20Imidazolium-Based%20Cationic%20Surfactants%20during%20Cooling-Induced%20Crystallization&rft.jtitle=Langmuir&rft.au=Wu,%20Fu-Gen&rft.date=2012-05-15&rft.volume=28&rft.issue=19&rft.spage=7350&rft.epage=7359&rft.pages=7350-7359&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la300739x&rft_dat=%3Cproquest_cross%3E1013918336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-c20fc9ad06e367b8d9f5639e76207239325f96461e38cf8715ba76b2fbd0cc1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1013918336&rft_id=info:pmid/22537254&rfr_iscdi=true