Loading…

Intraneuronally injected amyloid β inhibits long-term potentiation in rat hippocampal slices

Extracellular accumulation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD). It has been reported that extracellular perfusion of Aβ inhibits long-term potentiation (LTP), which is strongly related to memory in animal models. However, it has recently been proposed that intracellul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 2012-05, Vol.107 (9), p.2526-2531
Main Authors: Nomura, Izumi, Takechi, Hajime, Kato, Nobuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular accumulation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD). It has been reported that extracellular perfusion of Aβ inhibits long-term potentiation (LTP), which is strongly related to memory in animal models. However, it has recently been proposed that intracellular Aβ may be the first pathological change to occur in AD. Here, we have investigated the effect on LTP of intracellular injection of Aβ (Aβ(1-40), Aβ(1-42)) into hippocampal pyramidal cells using patch-clamp technique. We found that injection of 1 nM Aβ(1-42) completely blocked LTP, and extracellular perfusion of a p38 MAPK inhibitor or a metabotropic glutamate receptor blocker reversed these blocking effects on LTP. Furthermore, we have examined the effects of different concentrations of Aβ(1-40) and Aβ(1-42) on LTP and showed that Aβ(1-40) required a 1,000-fold higher concentration to attenuate LTP than 1 nM Aβ(1-42). These results indicate that LTP is impaired by Aβ injected into genetically wild-type neurons in the sliced hippocampus, suggesting an acute action of intracellular Aβ on the intracellular LTP-inducing machinery.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00589.2011