Loading…

Reproductive and Metabolic Phenotype of a Mouse Model of PCOS

Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women in their reproductive age, is characterized by both reproductive and metabolic features. Recent studies in human, nonhuman primates, and sheep suggest that hyperandrogenism plays an important role in the development of PCO...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2012-06, Vol.153 (6), p.2861-2869
Main Authors: van Houten, E. Leonie A.F, Kramer, Piet, McLuskey, Anke, Karels, Bas, Themmen, Axel P.N, Visser, Jenny A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women in their reproductive age, is characterized by both reproductive and metabolic features. Recent studies in human, nonhuman primates, and sheep suggest that hyperandrogenism plays an important role in the development of PCOS. We investigated whether chronic dihydrotestosterone (DHT) exposure in mice reproduces both features of PCOS. Such a model would allow us to study the mechanism of association between the reproductive and metabolic features in transgenic mice. In this study, prepubertal female mice received a 90 d continuous release pellet containing the nonaromatizable androgen DHT or vehicle. At the end of the treatment period, DHT-treated mice were in continuous anestrous, their ovaries contained an increased number of atretic follicles, with the majority of atretic antral follicles having a cyst-like structure. Chronic DHT-exposed mice had significantly higher body weights (21%) than vehicle-treated mice. In addition, fat depots of DHT-treated mice displayed an increased number of enlarged adipocytes (P < 0.003). Leptin levels were elevated (P < 0.013), adiponectin levels were diminished (P < 0.001), and DHT-treated mice were glucose intolerant (P < 0.001). In conclusion, a mouse model of PCOS has been developed showing reproductive and metabolic characteristics associated with PCOS in women.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2011-1754