Loading…

Maintenance of redox state and pancreatic beta-cell function: Role of leptin and adiponectin

Whereas oxidative stress is linked to cellular damage, reactive oxygen species (ROS) are also believed to be involved in the propagation of signaling pathways. Studies on the role of ROS in pancreatic beta‐cell physiology, in contrast to pathophysiology, have not yet been reported. In this study we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular biochemistry 2012-06, Vol.113 (6), p.1966-1976
Main Authors: Chetboun, Moria, Abitbol, Guila, Rozenberg, Konstantin, Rozenfeld, Hava, Deutsch, Avigail, Sampson, Sanford R., Rosenzweig, Tovit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Whereas oxidative stress is linked to cellular damage, reactive oxygen species (ROS) are also believed to be involved in the propagation of signaling pathways. Studies on the role of ROS in pancreatic beta‐cell physiology, in contrast to pathophysiology, have not yet been reported. In this study we investigate the importance of maintaining cellular redox state on pancreatic beta‐cell function and viability, and the effects of leptin and adiponectin on this balance. Experiments were conducted on RINm and MIN6 pancreatic beta‐cells. Leptin (1–100 ng/ml) and adiponectin (1–100 nM) increased ROS accumulation, as was determined by DCFDA fluorescence. Using specific inhibitors, we found that the increase in ROS levels was mediated by NADPH oxidase (Nox), but not by AMP kinase (AMPK) or phosphatidyl inositol 3 kinase (PI3K). Leptin and adiponectin increased beta‐cell number as detected by the XTT method, but did not affect apoptosis, indicating that the increased cell number results from increased proliferation. The adipokines‐induced increase in viability is ROS dependent as this effect was abolished by N‐acetyl‐L‐cysteine (NAC) or PEG‐catalase. In addition, insulin secretion was found to be regulated by alterations in redox state, but not by adipokines. Finally, the effects of the various treatments on activity and mRNA expression of several antioxidant enzymes were determined. Both leptin and adiponectin reduced mRNA levels of superoxide dismutase (SOD)1. Adiponectin also decreased SOD activity and increased catalase and glutathione peroxidase (GPx) activities in the presence of H2O2. The results of this study show that leptin and adiponectin, by inducing a physiological increase in ROS levels, may be positive regulators of beta‐cell mass. J. Cell. Biochem. 113: 1966–1976, 2012. © 2012 Wiley Periodicals, Inc.
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.24065