Loading…

Heat-Induced Antigen Retrieval Applied in Zebrafish: Whole-Mount In Situ Immunofluorescence Microscopy

Whole-mount immunofluorescence technique provides a way to reveal integrated expression patterns of biological molecules in individuals. Well-documented morphological preservation ability in biology makes aldehydes the fixative of choice. Cross-linking among biocomponents and aldehydes is the key fo...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis 2012-06, Vol.18 (3), p.493-496
Main Authors: Lin, Chuang-yu, Su, Wen-ta, Li, Li-tzu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Whole-mount immunofluorescence technique provides a way to reveal integrated expression patterns of biological molecules in individuals. Well-documented morphological preservation ability in biology makes aldehydes the fixative of choice. Cross-linking among biocomponents and aldehydes is the key for maintaining morphology but masks the biological molecules for immunodetection. This study performs an easily accessible method by applying heat-induced retrieval, which can rescue the antigenicity of the proteins and also enhance the labeling sensitivity of the fluorescence dye in overfixed zebrafish embryos. The results show that the immunoreactivities of antibodies to myosin in the muscles, green fluorescent protein in the blood vessels and the nuclei in the cells can be recovered significantly, and the morphology of the zebrafish embryos, even the fragile mutants, is at the same time well maintained. Therefore, we provide a choice for antigen retrieval, which is effective for whole-mount immunofluorescence microscopy.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927612000141