Loading…

Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner

• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be ide...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2012-01, Vol.193 (1), p.67-80
Main Authors: Leida, Carmen, Conesa, Ana, Llácer, Gerardo, Badenes, María Luisa, Ríos, Gabino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23
cites cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23
container_end_page 80
container_issue 1
container_start_page 67
container_title The New phytologist
container_volume 193
creator Leida, Carmen
Conesa, Ana
Llácer, Gerardo
Badenes, María Luisa
Ríos, Gabino
description • Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.
doi_str_mv 10.1111/j.1469-8137.2011.03863.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017956288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.193.1.67</jstor_id><sourcerecordid>newphytologist.193.1.67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</originalsourceid><addsrcrecordid>eNqNkU-P1CAYhxujccfVr6AkXjzsVCgt0IOHzbo6JuufRDfxRii8naXpQIXWnbl58e5n9JNIZ9Y5eJILL-H5vZD3yTJEcE7SetnlpGT1UhDK8wITkmMqGM2397LF8eJ-tsC4EEtWsq8n2aMYO4xxXbHiYXZSEFHXVcUW2c-VjaN3gDbe2NZqNVrvIlLOINgOAWJMZ-Rb9Pr8PUNrSKR1aAClb5AK-9jUqxEMMlOwbo2aKZU-bJTTOxSgBxX3EYX01I_2uwq_f_wyMIAz4EaUOAfhcfagVX2EJ3f7aXb95vLLxWp59fHtu4vzq6VmmNFlRZThrGwUJaqqCl7Ruiwpa8EYTRpeNAQ0F5w2DccAWnNaC04Ew4aWjTAFPc1eHPoOwX-bII5yY6OGvlcO_BQlwYTPIxIioc__QTs_BZd-J4uKUCrSBGmixIHSwccYoJVDsBsVdqmVnFXJTs5G5GxEzqrkXpXcpujTuwemZgPmGPzrJgGvDsCt7WH3343lh0-ruUr5s0O-S4bDMe_gdrjZjb7366RekppKIhlP-LMD3iov1TrYKK8_p8YUk5rhkjP6BzvTvVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513388993</pqid></control><display><type>article</type><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><source>Wiley</source><source>JSTOR Archival Journals</source><creator>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</creator><creatorcontrib>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</creatorcontrib><description>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2011.03863.x</identifier><identifier>PMID: 21899556</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abscisic acid ; Abscisic Acid - pharmacology ; Acetylation - drug effects ; Arabidopsis thaliana ; bud dormancy ; Budbreak ; buds ; Cellular stress response ; Cereals ; Chilling ; Chilling requirement ; Chromatin ; Chromatin Immunoprecipitation ; chromatin immunoprecipitation (ChIP) ; Cooling ; correlated responses ; Cultivars ; DNA microarrays ; Dormancy ; Drought ; Ecotype ; Epigenetics ; Expressed Sequence Tags ; Flower buds ; Flowering ; Flowers - drug effects ; Flowers - genetics ; Flowers - growth &amp; development ; Fruits ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genes, Plant - genetics ; grains ; Histone H3 ; Histones ; Histones - metabolism ; Hybridization ; Immunoprecipitation ; introns ; Lysine - metabolism ; MADS‐box ; Methylation - drug effects ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; peaches ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Principal Component Analysis ; promoter regions ; Protein Processing, Post-Translational - drug effects ; Prunus ; Prunus - drug effects ; Prunus - genetics ; Prunus - growth &amp; development ; Prunus persica ; Prunus persica (peach) ; Real-Time Polymerase Chain Reaction ; Reproducibility of Results ; stress response ; Transcription ; Transcription factors ; transcriptomics ; Vernalization ; water stress ; woody plants</subject><ispartof>The New phytologist, 2012-01, Vol.193 (1), p.67-80</ispartof><rights>2012 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</citedby><cites>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.193.1.67$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.193.1.67$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21899556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leida, Carmen</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Llácer, Gerardo</creatorcontrib><creatorcontrib>Badenes, María Luisa</creatorcontrib><creatorcontrib>Ríos, Gabino</creatorcontrib><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>Acetylation - drug effects</subject><subject>Arabidopsis thaliana</subject><subject>bud dormancy</subject><subject>Budbreak</subject><subject>buds</subject><subject>Cellular stress response</subject><subject>Cereals</subject><subject>Chilling</subject><subject>Chilling requirement</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>chromatin immunoprecipitation (ChIP)</subject><subject>Cooling</subject><subject>correlated responses</subject><subject>Cultivars</subject><subject>DNA microarrays</subject><subject>Dormancy</subject><subject>Drought</subject><subject>Ecotype</subject><subject>Epigenetics</subject><subject>Expressed Sequence Tags</subject><subject>Flower buds</subject><subject>Flowering</subject><subject>Flowers - drug effects</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>grains</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Hybridization</subject><subject>Immunoprecipitation</subject><subject>introns</subject><subject>Lysine - metabolism</subject><subject>MADS‐box</subject><subject>Methylation - drug effects</subject><subject>Models, Biological</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>peaches</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Principal Component Analysis</subject><subject>promoter regions</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Prunus</subject><subject>Prunus - drug effects</subject><subject>Prunus - genetics</subject><subject>Prunus - growth &amp; development</subject><subject>Prunus persica</subject><subject>Prunus persica (peach)</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>stress response</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>transcriptomics</subject><subject>Vernalization</subject><subject>water stress</subject><subject>woody plants</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU-P1CAYhxujccfVr6AkXjzsVCgt0IOHzbo6JuufRDfxRii8naXpQIXWnbl58e5n9JNIZ9Y5eJILL-H5vZD3yTJEcE7SetnlpGT1UhDK8wITkmMqGM2397LF8eJ-tsC4EEtWsq8n2aMYO4xxXbHiYXZSEFHXVcUW2c-VjaN3gDbe2NZqNVrvIlLOINgOAWJMZ-Rb9Pr8PUNrSKR1aAClb5AK-9jUqxEMMlOwbo2aKZU-bJTTOxSgBxX3EYX01I_2uwq_f_wyMIAz4EaUOAfhcfagVX2EJ3f7aXb95vLLxWp59fHtu4vzq6VmmNFlRZThrGwUJaqqCl7Ruiwpa8EYTRpeNAQ0F5w2DccAWnNaC04Ew4aWjTAFPc1eHPoOwX-bII5yY6OGvlcO_BQlwYTPIxIioc__QTs_BZd-J4uKUCrSBGmixIHSwccYoJVDsBsVdqmVnFXJTs5G5GxEzqrkXpXcpujTuwemZgPmGPzrJgGvDsCt7WH3343lh0-ruUr5s0O-S4bDMe_gdrjZjb7366RekppKIhlP-LMD3iov1TrYKK8_p8YUk5rhkjP6BzvTvVQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Leida, Carmen</creator><creator>Conesa, Ana</creator><creator>Llácer, Gerardo</creator><creator>Badenes, María Luisa</creator><creator>Ríos, Gabino</creator><general>Blackwell Publishing Ltd</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope></search><sort><creationdate>201201</creationdate><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><author>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>Acetylation - drug effects</topic><topic>Arabidopsis thaliana</topic><topic>bud dormancy</topic><topic>Budbreak</topic><topic>buds</topic><topic>Cellular stress response</topic><topic>Cereals</topic><topic>Chilling</topic><topic>Chilling requirement</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>chromatin immunoprecipitation (ChIP)</topic><topic>Cooling</topic><topic>correlated responses</topic><topic>Cultivars</topic><topic>DNA microarrays</topic><topic>Dormancy</topic><topic>Drought</topic><topic>Ecotype</topic><topic>Epigenetics</topic><topic>Expressed Sequence Tags</topic><topic>Flower buds</topic><topic>Flowering</topic><topic>Flowers - drug effects</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>grains</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Hybridization</topic><topic>Immunoprecipitation</topic><topic>introns</topic><topic>Lysine - metabolism</topic><topic>MADS‐box</topic><topic>Methylation - drug effects</topic><topic>Models, Biological</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>peaches</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Principal Component Analysis</topic><topic>promoter regions</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Prunus</topic><topic>Prunus - drug effects</topic><topic>Prunus - genetics</topic><topic>Prunus - growth &amp; development</topic><topic>Prunus persica</topic><topic>Prunus persica (peach)</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>stress response</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>transcriptomics</topic><topic>Vernalization</topic><topic>water stress</topic><topic>woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leida, Carmen</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Llácer, Gerardo</creatorcontrib><creatorcontrib>Badenes, María Luisa</creatorcontrib><creatorcontrib>Ríos, Gabino</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leida, Carmen</au><au>Conesa, Ana</au><au>Llácer, Gerardo</au><au>Badenes, María Luisa</au><au>Ríos, Gabino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>193</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21899556</pmid><doi>10.1111/j.1469-8137.2011.03863.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2012-01, Vol.193 (1), p.67-80
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1017956288
source Wiley; JSTOR Archival Journals
subjects Abscisic acid
Abscisic Acid - pharmacology
Acetylation - drug effects
Arabidopsis thaliana
bud dormancy
Budbreak
buds
Cellular stress response
Cereals
Chilling
Chilling requirement
Chromatin
Chromatin Immunoprecipitation
chromatin immunoprecipitation (ChIP)
Cooling
correlated responses
Cultivars
DNA microarrays
Dormancy
Drought
Ecotype
Epigenetics
Expressed Sequence Tags
Flower buds
Flowering
Flowers - drug effects
Flowers - genetics
Flowers - growth & development
Fruits
Gene expression
gene expression regulation
Gene Expression Regulation, Plant - drug effects
Genes
Genes, Plant - genetics
grains
Histone H3
Histones
Histones - metabolism
Hybridization
Immunoprecipitation
introns
Lysine - metabolism
MADS‐box
Methylation - drug effects
Models, Biological
Oligonucleotide Array Sequence Analysis
peaches
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Principal Component Analysis
promoter regions
Protein Processing, Post-Translational - drug effects
Prunus
Prunus - drug effects
Prunus - genetics
Prunus - growth & development
Prunus persica
Prunus persica (peach)
Real-Time Polymerase Chain Reaction
Reproducibility of Results
stress response
Transcription
Transcription factors
transcriptomics
Vernalization
water stress
woody plants
title Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20modifications%20and%20expression%20of%20DAM6%20gene%20in%20peach%20are%20modulated%20during%20bud%20dormancy%20release%20in%20a%20cultivar%E2%80%90dependent%20manner&rft.jtitle=The%20New%20phytologist&rft.au=Leida,%20Carmen&rft.date=2012-01&rft.volume=193&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2011.03863.x&rft_dat=%3Cjstor_proqu%3Enewphytologist.193.1.67%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513388993&rft_id=info:pmid/21899556&rft_jstor_id=newphytologist.193.1.67&rfr_iscdi=true