Loading…
Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner
• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be ide...
Saved in:
Published in: | The New phytologist 2012-01, Vol.193 (1), p.67-80 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23 |
container_end_page | 80 |
container_issue | 1 |
container_start_page | 67 |
container_title | The New phytologist |
container_volume | 193 |
creator | Leida, Carmen Conesa, Ana Llácer, Gerardo Badenes, María Luisa Ríos, Gabino |
description | • Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals. |
doi_str_mv | 10.1111/j.1469-8137.2011.03863.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017956288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.193.1.67</jstor_id><sourcerecordid>newphytologist.193.1.67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</originalsourceid><addsrcrecordid>eNqNkU-P1CAYhxujccfVr6AkXjzsVCgt0IOHzbo6JuufRDfxRii8naXpQIXWnbl58e5n9JNIZ9Y5eJILL-H5vZD3yTJEcE7SetnlpGT1UhDK8wITkmMqGM2397LF8eJ-tsC4EEtWsq8n2aMYO4xxXbHiYXZSEFHXVcUW2c-VjaN3gDbe2NZqNVrvIlLOINgOAWJMZ-Rb9Pr8PUNrSKR1aAClb5AK-9jUqxEMMlOwbo2aKZU-bJTTOxSgBxX3EYX01I_2uwq_f_wyMIAz4EaUOAfhcfagVX2EJ3f7aXb95vLLxWp59fHtu4vzq6VmmNFlRZThrGwUJaqqCl7Ruiwpa8EYTRpeNAQ0F5w2DccAWnNaC04Ew4aWjTAFPc1eHPoOwX-bII5yY6OGvlcO_BQlwYTPIxIioc__QTs_BZd-J4uKUCrSBGmixIHSwccYoJVDsBsVdqmVnFXJTs5G5GxEzqrkXpXcpujTuwemZgPmGPzrJgGvDsCt7WH3343lh0-ruUr5s0O-S4bDMe_gdrjZjb7366RekppKIhlP-LMD3iov1TrYKK8_p8YUk5rhkjP6BzvTvVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513388993</pqid></control><display><type>article</type><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><source>Wiley</source><source>JSTOR Archival Journals</source><creator>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</creator><creatorcontrib>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</creatorcontrib><description>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2011.03863.x</identifier><identifier>PMID: 21899556</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abscisic acid ; Abscisic Acid - pharmacology ; Acetylation - drug effects ; Arabidopsis thaliana ; bud dormancy ; Budbreak ; buds ; Cellular stress response ; Cereals ; Chilling ; Chilling requirement ; Chromatin ; Chromatin Immunoprecipitation ; chromatin immunoprecipitation (ChIP) ; Cooling ; correlated responses ; Cultivars ; DNA microarrays ; Dormancy ; Drought ; Ecotype ; Epigenetics ; Expressed Sequence Tags ; Flower buds ; Flowering ; Flowers - drug effects ; Flowers - genetics ; Flowers - growth & development ; Fruits ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genes, Plant - genetics ; grains ; Histone H3 ; Histones ; Histones - metabolism ; Hybridization ; Immunoprecipitation ; introns ; Lysine - metabolism ; MADS‐box ; Methylation - drug effects ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; peaches ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Principal Component Analysis ; promoter regions ; Protein Processing, Post-Translational - drug effects ; Prunus ; Prunus - drug effects ; Prunus - genetics ; Prunus - growth & development ; Prunus persica ; Prunus persica (peach) ; Real-Time Polymerase Chain Reaction ; Reproducibility of Results ; stress response ; Transcription ; Transcription factors ; transcriptomics ; Vernalization ; water stress ; woody plants</subject><ispartof>The New phytologist, 2012-01, Vol.193 (1), p.67-80</ispartof><rights>2012 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</citedby><cites>FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.193.1.67$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.193.1.67$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21899556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leida, Carmen</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Llácer, Gerardo</creatorcontrib><creatorcontrib>Badenes, María Luisa</creatorcontrib><creatorcontrib>Ríos, Gabino</creatorcontrib><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>Acetylation - drug effects</subject><subject>Arabidopsis thaliana</subject><subject>bud dormancy</subject><subject>Budbreak</subject><subject>buds</subject><subject>Cellular stress response</subject><subject>Cereals</subject><subject>Chilling</subject><subject>Chilling requirement</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>chromatin immunoprecipitation (ChIP)</subject><subject>Cooling</subject><subject>correlated responses</subject><subject>Cultivars</subject><subject>DNA microarrays</subject><subject>Dormancy</subject><subject>Drought</subject><subject>Ecotype</subject><subject>Epigenetics</subject><subject>Expressed Sequence Tags</subject><subject>Flower buds</subject><subject>Flowering</subject><subject>Flowers - drug effects</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>grains</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Hybridization</subject><subject>Immunoprecipitation</subject><subject>introns</subject><subject>Lysine - metabolism</subject><subject>MADS‐box</subject><subject>Methylation - drug effects</subject><subject>Models, Biological</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>peaches</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Principal Component Analysis</subject><subject>promoter regions</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Prunus</subject><subject>Prunus - drug effects</subject><subject>Prunus - genetics</subject><subject>Prunus - growth & development</subject><subject>Prunus persica</subject><subject>Prunus persica (peach)</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>stress response</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>transcriptomics</subject><subject>Vernalization</subject><subject>water stress</subject><subject>woody plants</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU-P1CAYhxujccfVr6AkXjzsVCgt0IOHzbo6JuufRDfxRii8naXpQIXWnbl58e5n9JNIZ9Y5eJILL-H5vZD3yTJEcE7SetnlpGT1UhDK8wITkmMqGM2397LF8eJ-tsC4EEtWsq8n2aMYO4xxXbHiYXZSEFHXVcUW2c-VjaN3gDbe2NZqNVrvIlLOINgOAWJMZ-Rb9Pr8PUNrSKR1aAClb5AK-9jUqxEMMlOwbo2aKZU-bJTTOxSgBxX3EYX01I_2uwq_f_wyMIAz4EaUOAfhcfagVX2EJ3f7aXb95vLLxWp59fHtu4vzq6VmmNFlRZThrGwUJaqqCl7Ruiwpa8EYTRpeNAQ0F5w2DccAWnNaC04Ew4aWjTAFPc1eHPoOwX-bII5yY6OGvlcO_BQlwYTPIxIioc__QTs_BZd-J4uKUCrSBGmixIHSwccYoJVDsBsVdqmVnFXJTs5G5GxEzqrkXpXcpujTuwemZgPmGPzrJgGvDsCt7WH3343lh0-ruUr5s0O-S4bDMe_gdrjZjb7366RekppKIhlP-LMD3iov1TrYKK8_p8YUk5rhkjP6BzvTvVQ</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Leida, Carmen</creator><creator>Conesa, Ana</creator><creator>Llácer, Gerardo</creator><creator>Badenes, María Luisa</creator><creator>Ríos, Gabino</creator><general>Blackwell Publishing Ltd</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope></search><sort><creationdate>201201</creationdate><title>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</title><author>Leida, Carmen ; Conesa, Ana ; Llácer, Gerardo ; Badenes, María Luisa ; Ríos, Gabino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>Acetylation - drug effects</topic><topic>Arabidopsis thaliana</topic><topic>bud dormancy</topic><topic>Budbreak</topic><topic>buds</topic><topic>Cellular stress response</topic><topic>Cereals</topic><topic>Chilling</topic><topic>Chilling requirement</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>chromatin immunoprecipitation (ChIP)</topic><topic>Cooling</topic><topic>correlated responses</topic><topic>Cultivars</topic><topic>DNA microarrays</topic><topic>Dormancy</topic><topic>Drought</topic><topic>Ecotype</topic><topic>Epigenetics</topic><topic>Expressed Sequence Tags</topic><topic>Flower buds</topic><topic>Flowering</topic><topic>Flowers - drug effects</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>grains</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Hybridization</topic><topic>Immunoprecipitation</topic><topic>introns</topic><topic>Lysine - metabolism</topic><topic>MADS‐box</topic><topic>Methylation - drug effects</topic><topic>Models, Biological</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>peaches</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Principal Component Analysis</topic><topic>promoter regions</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Prunus</topic><topic>Prunus - drug effects</topic><topic>Prunus - genetics</topic><topic>Prunus - growth & development</topic><topic>Prunus persica</topic><topic>Prunus persica (peach)</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>stress response</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>transcriptomics</topic><topic>Vernalization</topic><topic>water stress</topic><topic>woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leida, Carmen</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Llácer, Gerardo</creatorcontrib><creatorcontrib>Badenes, María Luisa</creatorcontrib><creatorcontrib>Ríos, Gabino</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leida, Carmen</au><au>Conesa, Ana</au><au>Llácer, Gerardo</au><au>Badenes, María Luisa</au><au>Ríos, Gabino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>193</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS‐box transcription factors encoded by DORMANCY ASSOCIATED MADS‐box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy‐related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4–DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21899556</pmid><doi>10.1111/j.1469-8137.2011.03863.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2012-01, Vol.193 (1), p.67-80 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017956288 |
source | Wiley; JSTOR Archival Journals |
subjects | Abscisic acid Abscisic Acid - pharmacology Acetylation - drug effects Arabidopsis thaliana bud dormancy Budbreak buds Cellular stress response Cereals Chilling Chilling requirement Chromatin Chromatin Immunoprecipitation chromatin immunoprecipitation (ChIP) Cooling correlated responses Cultivars DNA microarrays Dormancy Drought Ecotype Epigenetics Expressed Sequence Tags Flower buds Flowering Flowers - drug effects Flowers - genetics Flowers - growth & development Fruits Gene expression gene expression regulation Gene Expression Regulation, Plant - drug effects Genes Genes, Plant - genetics grains Histone H3 Histones Histones - metabolism Hybridization Immunoprecipitation introns Lysine - metabolism MADS‐box Methylation - drug effects Models, Biological Oligonucleotide Array Sequence Analysis peaches Plant Proteins - genetics Plant Proteins - metabolism Plants Principal Component Analysis promoter regions Protein Processing, Post-Translational - drug effects Prunus Prunus - drug effects Prunus - genetics Prunus - growth & development Prunus persica Prunus persica (peach) Real-Time Polymerase Chain Reaction Reproducibility of Results stress response Transcription Transcription factors transcriptomics Vernalization water stress woody plants |
title | Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20modifications%20and%20expression%20of%20DAM6%20gene%20in%20peach%20are%20modulated%20during%20bud%20dormancy%20release%20in%20a%20cultivar%E2%80%90dependent%20manner&rft.jtitle=The%20New%20phytologist&rft.au=Leida,%20Carmen&rft.date=2012-01&rft.volume=193&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2011.03863.x&rft_dat=%3Cjstor_proqu%3Enewphytologist.193.1.67%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6063-51ad764ba31a55275394436feddc1b72b1ec7873bb70eecc739871860d34b8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513388993&rft_id=info:pmid/21899556&rft_jstor_id=newphytologist.193.1.67&rfr_iscdi=true |