Loading…
Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes
The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presen...
Saved in:
Published in: | Current biology 2012-04, Vol.22 (8), p.658-667 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3 |
container_end_page | 667 |
container_issue | 8 |
container_start_page | 658 |
container_title | Current biology |
container_volume | 22 |
creator | Sato, Hiroshi Masuda, Fumie Takayama, Yuko Takahashi, Kohta Saitoh, Shigeaki |
description | The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism.
We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants.
Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
► The presence of a dicentric chromosome causes cell-cycle arrest in interphase ► Epigenetic centromere inactivation stabilizes dicentric chromosomes ► Heterochromatin prevents reactivation of the inactivated centromere |
doi_str_mv | 10.1016/j.cub.2012.02.062 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017962248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982212002497</els_id><sourcerecordid>1010233195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EokvhB3CBHLlkGTuOY4sT2pa2UiUOS8-W40yKV5t4sZNK7a9nohSOCGkkS-PvPc28Yew9hy0Hrj4ftn5utwK42AKVEi_YhuvGlCBl_ZJtwCgojRbijL3J-QAEaqNeszMhpJLcwIYNl6dwjyNOwRc3o_NTeHBTiGPhxq7Yz23GXzOOU3GNE6bof6Y40P8YnlYq9oUrdgRQHxMW-8m14RiesLgIfmmT7W4RxUxAfste9e6Y8d3ze87uvl3-2F2Xt9-vbnZfb0tfczOVdeO15F53HHrpoGl1BWhq0aBy0nVcSeW91l6opnZV34mmc85ID6KWHjtfnbNPq-8pRZo_T3YI2ePx6EaMc7aUXmMUpaD_BwVRVdzUhPIV9SnmnLC3pxQGlx4JWjhlD5YOYpeDWKBSgjQfnu3ndsDur-LPBQj4uAK9i9bdp5Dt3Z4cagCotGqWCb-sBFJiDwGTzT7gSIuGhH6yXQz_GOA33FqmIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010233195</pqid></control><display><type>article</type><title>Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Sato, Hiroshi ; Masuda, Fumie ; Takayama, Yuko ; Takahashi, Kohta ; Saitoh, Shigeaki</creator><creatorcontrib>Sato, Hiroshi ; Masuda, Fumie ; Takayama, Yuko ; Takahashi, Kohta ; Saitoh, Shigeaki</creatorcontrib><description>The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism.
We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants.
Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
► The presence of a dicentric chromosome causes cell-cycle arrest in interphase ► Epigenetic centromere inactivation stabilizes dicentric chromosomes ► Heterochromatin prevents reactivation of the inactivated centromere</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2012.02.062</identifier><identifier>PMID: 22464190</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acetylation ; Cell Cycle Checkpoints - genetics ; Centromere ; Centromeres ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; chromosome elimination ; chromosome translocation ; Chromosomes ; Chromosomes, Artificial, Yeast ; Chromosomes, Fungal ; Cytology ; Deacetylation ; DNA ; DNA structure ; DNA, Fungal - chemistry ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; Epigenesis, Genetic ; epigenetics ; eukaryotic cells ; genes ; Heterochromatin ; Heterochromatin - genetics ; Histones ; Histones - metabolism ; Interphase - genetics ; Kinetochores ; Kinetochores - metabolism ; loci ; Meiosis ; Mitosis ; multiprotein complexes ; mutants ; Mutation ; Schizosaccharomyces - cytology ; Schizosaccharomyces - genetics ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Spindles</subject><ispartof>Current biology, 2012-04, Vol.22 (8), p.658-667</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3</citedby><cites>FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22464190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Masuda, Fumie</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Takahashi, Kohta</creatorcontrib><creatorcontrib>Saitoh, Shigeaki</creatorcontrib><title>Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism.
We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants.
Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
► The presence of a dicentric chromosome causes cell-cycle arrest in interphase ► Epigenetic centromere inactivation stabilizes dicentric chromosomes ► Heterochromatin prevents reactivation of the inactivated centromere</description><subject>Acetylation</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Centromere</subject><subject>Centromeres</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>chromosome elimination</subject><subject>chromosome translocation</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Yeast</subject><subject>Chromosomes, Fungal</subject><subject>Cytology</subject><subject>Deacetylation</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>epigenetics</subject><subject>eukaryotic cells</subject><subject>genes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Interphase - genetics</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>loci</subject><subject>Meiosis</subject><subject>Mitosis</subject><subject>multiprotein complexes</subject><subject>mutants</subject><subject>Mutation</subject><subject>Schizosaccharomyces - cytology</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Spindles</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EokvhB3CBHLlkGTuOY4sT2pa2UiUOS8-W40yKV5t4sZNK7a9nohSOCGkkS-PvPc28Yew9hy0Hrj4ftn5utwK42AKVEi_YhuvGlCBl_ZJtwCgojRbijL3J-QAEaqNeszMhpJLcwIYNl6dwjyNOwRc3o_NTeHBTiGPhxq7Yz23GXzOOU3GNE6bof6Y40P8YnlYq9oUrdgRQHxMW-8m14RiesLgIfmmT7W4RxUxAfste9e6Y8d3ze87uvl3-2F2Xt9-vbnZfb0tfczOVdeO15F53HHrpoGl1BWhq0aBy0nVcSeW91l6opnZV34mmc85ID6KWHjtfnbNPq-8pRZo_T3YI2ePx6EaMc7aUXmMUpaD_BwVRVdzUhPIV9SnmnLC3pxQGlx4JWjhlD5YOYpeDWKBSgjQfnu3ndsDur-LPBQj4uAK9i9bdp5Dt3Z4cagCotGqWCb-sBFJiDwGTzT7gSIuGhH6yXQz_GOA33FqmIw</recordid><startdate>20120424</startdate><enddate>20120424</enddate><creator>Sato, Hiroshi</creator><creator>Masuda, Fumie</creator><creator>Takayama, Yuko</creator><creator>Takahashi, Kohta</creator><creator>Saitoh, Shigeaki</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20120424</creationdate><title>Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes</title><author>Sato, Hiroshi ; Masuda, Fumie ; Takayama, Yuko ; Takahashi, Kohta ; Saitoh, Shigeaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Centromere</topic><topic>Centromeres</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>chromosome elimination</topic><topic>chromosome translocation</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Yeast</topic><topic>Chromosomes, Fungal</topic><topic>Cytology</topic><topic>Deacetylation</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>epigenetics</topic><topic>eukaryotic cells</topic><topic>genes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Interphase - genetics</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>loci</topic><topic>Meiosis</topic><topic>Mitosis</topic><topic>multiprotein complexes</topic><topic>mutants</topic><topic>Mutation</topic><topic>Schizosaccharomyces - cytology</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Spindles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Masuda, Fumie</creatorcontrib><creatorcontrib>Takayama, Yuko</creatorcontrib><creatorcontrib>Takahashi, Kohta</creatorcontrib><creatorcontrib>Saitoh, Shigeaki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Hiroshi</au><au>Masuda, Fumie</au><au>Takayama, Yuko</au><au>Takahashi, Kohta</au><au>Saitoh, Shigeaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2012-04-24</date><risdate>2012</risdate><volume>22</volume><issue>8</issue><spage>658</spage><epage>667</epage><pages>658-667</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism.
We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants.
Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
► The presence of a dicentric chromosome causes cell-cycle arrest in interphase ► Epigenetic centromere inactivation stabilizes dicentric chromosomes ► Heterochromatin prevents reactivation of the inactivated centromere</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>22464190</pmid><doi>10.1016/j.cub.2012.02.062</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2012-04, Vol.22 (8), p.658-667 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017962248 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Acetylation Cell Cycle Checkpoints - genetics Centromere Centromeres Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism chromosome elimination chromosome translocation Chromosomes Chromosomes, Artificial, Yeast Chromosomes, Fungal Cytology Deacetylation DNA DNA structure DNA, Fungal - chemistry DNA, Fungal - genetics DNA, Fungal - metabolism Epigenesis, Genetic epigenetics eukaryotic cells genes Heterochromatin Heterochromatin - genetics Histones Histones - metabolism Interphase - genetics Kinetochores Kinetochores - metabolism loci Meiosis Mitosis multiprotein complexes mutants Mutation Schizosaccharomyces - cytology Schizosaccharomyces - genetics Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Spindles |
title | Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20Inactivation%20and%20Subsequent%20Heterochromatinization%20of%20a%20Centromere%20Stabilize%20Dicentric%20Chromosomes&rft.jtitle=Current%20biology&rft.au=Sato,%20Hiroshi&rft.date=2012-04-24&rft.volume=22&rft.issue=8&rft.spage=658&rft.epage=667&rft.pages=658-667&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2012.02.062&rft_dat=%3Cproquest_cross%3E1010233195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-57c841c8d10f4a07b830e9527e6a4ad1646cc88c2675a3fd27daa94c0254cedc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010233195&rft_id=info:pmid/22464190&rfr_iscdi=true |