Loading…
Integrated water resource management in a major canal command in eastern India
The present rice‐dominated cropping system in the Hirakud canal command (eastern India) is under severe threat due to imbalance between irrigation water supply and demand. The canal water supply, which is the only source of irrigation, only meets 54% of the demand at 90% probability of exceedance (P...
Saved in:
Published in: | Hydrological processes 2011-07, Vol.25 (16), p.2551-2562 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present rice‐dominated cropping system in the Hirakud canal command (eastern India) is under severe threat due to imbalance between irrigation water supply and demand. The canal water supply, which is the only source of irrigation, only meets 54% of the demand at 90% probability of exceedance (PE). In order to mitigate the irrigation water deficit from canal water, groundwater is considered as a supplemental source. Quasi‐three‐dimensional groundwater flow simulation modelling was, therefore, carried out by using Visual MODFLOW to detect the change in hydraulic head due to transient pumping stresses. The simulation model was calibrated and validated satisfactorily. Sensitivity analysis of the model parameters shows that groundwater recharge is most sensitive followed by aquifer hydraulic conductivity at almost all the sites of the command area, whereas the model is comparatively less sensitive to specific storage and specific yield. Enhanced pumping scenarios showed that groundwater extraction can be increased up to 50 times of the existing pumping without causing any adverse effect to the aquifer but the aquifer does not permit to exploit water in order to fulfill the irrigation water demand even at 10% PE. Hence, it is imperative to develop an optimal land and water resources management plan of the command area. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0885-6087 1099-1085 1099-1085 |
DOI: | 10.1002/hyp.8028 |