Loading…
Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes
Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upp...
Saved in:
Published in: | Journal of climate 2012-03, Vol.25 (6), p.2178-2191 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3 |
container_end_page | 2191 |
container_issue | 6 |
container_start_page | 2178 |
container_title | Journal of climate |
container_volume | 25 |
creator | Satoh, Masaki Iga, Shin-Ichi Tomita, Hirofumi Tsushima, Yoko Noda, Akira T. |
description | Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed. |
doi_str_mv | 10.1175/JCLI-D-11-00152.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017972212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191309</jstor_id><sourcerecordid>26191309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EEkvhB3BAspCQuKR4nDiJj2hbStFCEWLF0XIch3rltYPHK9oj_7xeUkDiNLbne0_jeYQ8B3YK0Ik3H9aby-qsAqgYA8FP4QFZlcoq1jT8IVmxXjZV3wnxmDxB3BWIt4ytyK8vFucY0NI40e0820TXPh5GpC7QCx8H7ek3nfYufKfnN6Xt9jZkpFdD1i7YkW7x2NJ_2E8xXN-OKWLW2Rn6MY7W058uXx_V3hmXF3_6OUVjES0-JY8m7dE-u68nZPvu_Ov6fbW5urhcv91UpmEsV5NuuBxq2Y0D8L6rpeGyl7Lt5TCObd8IPpp-4FbXw1AuspmgBW7EOJV3raf6hLxefOcUfxwsZrV3aKz3Oth4QAUMOtlxDrygL_9Dd_GQQplOyabsTSwQLJApv8VkJzWX5eh0W5zUMRN1zESdlbP6nYmConl1b6zRaD8lHYzDv0Iu2hpAdIV7sXA7zDH967cgoWayvgMaSJbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>942605212</pqid></control><display><type>article</type><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</creator><creatorcontrib>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</creatorcontrib><description>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-11-00152.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climate change ; Climate models ; Climatic conditions ; Cloud cover ; Clouds ; Convection ; Convection clouds ; Earth, ocean, space ; Exact sciences and technology ; Experiments ; External geophysics ; Fluctuations ; General circulation models ; Global climate models ; Global warming ; Humidity ; Hydrometers ; Marine ; Meteorology ; Microphysics ; Relative humidity ; Remote sensing ; Science ; Sea surface temperature ; Studies ; Subsidence ; Tropical climates ; Tropical environments</subject><ispartof>Journal of climate, 2012-03, Vol.25 (6), p.2178-2191</ispartof><rights>2012 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Mar 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</citedby><cites>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191309$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191309$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25631157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Satoh, Masaki</creatorcontrib><creatorcontrib>Iga, Shin-Ichi</creatorcontrib><creatorcontrib>Tomita, Hirofumi</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Noda, Akira T.</creatorcontrib><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><title>Journal of climate</title><description>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</description><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Convection</subject><subject>Convection clouds</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>General circulation models</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Humidity</subject><subject>Hydrometers</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Science</subject><subject>Sea surface temperature</subject><subject>Studies</subject><subject>Subsidence</subject><subject>Tropical climates</subject><subject>Tropical environments</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EEkvhB3BAspCQuKR4nDiJj2hbStFCEWLF0XIch3rltYPHK9oj_7xeUkDiNLbne0_jeYQ8B3YK0Ik3H9aby-qsAqgYA8FP4QFZlcoq1jT8IVmxXjZV3wnxmDxB3BWIt4ytyK8vFucY0NI40e0820TXPh5GpC7QCx8H7ek3nfYufKfnN6Xt9jZkpFdD1i7YkW7x2NJ_2E8xXN-OKWLW2Rn6MY7W058uXx_V3hmXF3_6OUVjES0-JY8m7dE-u68nZPvu_Ov6fbW5urhcv91UpmEsV5NuuBxq2Y0D8L6rpeGyl7Lt5TCObd8IPpp-4FbXw1AuspmgBW7EOJV3raf6hLxefOcUfxwsZrV3aKz3Oth4QAUMOtlxDrygL_9Dd_GQQplOyabsTSwQLJApv8VkJzWX5eh0W5zUMRN1zESdlbP6nYmConl1b6zRaD8lHYzDv0Iu2hpAdIV7sXA7zDH967cgoWayvgMaSJbA</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Satoh, Masaki</creator><creator>Iga, Shin-Ichi</creator><creator>Tomita, Hirofumi</creator><creator>Tsushima, Yoko</creator><creator>Noda, Akira T.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>H97</scope></search><sort><creationdate>20120315</creationdate><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><author>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Convection</topic><topic>Convection clouds</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>General circulation models</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Humidity</topic><topic>Hydrometers</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Science</topic><topic>Sea surface temperature</topic><topic>Studies</topic><topic>Subsidence</topic><topic>Tropical climates</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satoh, Masaki</creatorcontrib><creatorcontrib>Iga, Shin-Ichi</creatorcontrib><creatorcontrib>Tomita, Hirofumi</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Noda, Akira T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satoh, Masaki</au><au>Iga, Shin-Ichi</au><au>Tomita, Hirofumi</au><au>Tsushima, Yoko</au><au>Noda, Akira T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</atitle><jtitle>Journal of climate</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>25</volume><issue>6</issue><spage>2178</spage><epage>2191</epage><pages>2178-2191</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-11-00152.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2012-03, Vol.25 (6), p.2178-2191 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017972212 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Climate change Climate models Climatic conditions Cloud cover Clouds Convection Convection clouds Earth, ocean, space Exact sciences and technology Experiments External geophysics Fluctuations General circulation models Global climate models Global warming Humidity Hydrometers Marine Meteorology Microphysics Relative humidity Remote sensing Science Sea surface temperature Studies Subsidence Tropical climates Tropical environments |
title | Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20Upper%20Clouds%20in%20Global%20Warming%20Experiments%20Obtained%20Using%20a%20Global%20Nonhydrostatic%20Model%20with%20Explicit%20Cloud%20Processes&rft.jtitle=Journal%20of%20climate&rft.au=Satoh,%20Masaki&rft.date=2012-03-15&rft.volume=25&rft.issue=6&rft.spage=2178&rft.epage=2191&rft.pages=2178-2191&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-11-00152.1&rft_dat=%3Cjstor_proqu%3E26191309%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=942605212&rft_id=info:pmid/&rft_jstor_id=26191309&rfr_iscdi=true |