Loading…

Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes

Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2012-03, Vol.25 (6), p.2178-2191
Main Authors: Satoh, Masaki, Iga, Shin-Ichi, Tomita, Hirofumi, Tsushima, Yoko, Noda, Akira T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3
cites cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3
container_end_page 2191
container_issue 6
container_start_page 2178
container_title Journal of climate
container_volume 25
creator Satoh, Masaki
Iga, Shin-Ichi
Tomita, Hirofumi
Tsushima, Yoko
Noda, Akira T.
description Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.
doi_str_mv 10.1175/JCLI-D-11-00152.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017972212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191309</jstor_id><sourcerecordid>26191309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EEkvhB3BAspCQuKR4nDiJj2hbStFCEWLF0XIch3rltYPHK9oj_7xeUkDiNLbne0_jeYQ8B3YK0Ik3H9aby-qsAqgYA8FP4QFZlcoq1jT8IVmxXjZV3wnxmDxB3BWIt4ytyK8vFucY0NI40e0820TXPh5GpC7QCx8H7ek3nfYufKfnN6Xt9jZkpFdD1i7YkW7x2NJ_2E8xXN-OKWLW2Rn6MY7W058uXx_V3hmXF3_6OUVjES0-JY8m7dE-u68nZPvu_Ov6fbW5urhcv91UpmEsV5NuuBxq2Y0D8L6rpeGyl7Lt5TCObd8IPpp-4FbXw1AuspmgBW7EOJV3raf6hLxefOcUfxwsZrV3aKz3Oth4QAUMOtlxDrygL_9Dd_GQQplOyabsTSwQLJApv8VkJzWX5eh0W5zUMRN1zESdlbP6nYmConl1b6zRaD8lHYzDv0Iu2hpAdIV7sXA7zDH967cgoWayvgMaSJbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>942605212</pqid></control><display><type>article</type><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</creator><creatorcontrib>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</creatorcontrib><description>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-11-00152.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climate change ; Climate models ; Climatic conditions ; Cloud cover ; Clouds ; Convection ; Convection clouds ; Earth, ocean, space ; Exact sciences and technology ; Experiments ; External geophysics ; Fluctuations ; General circulation models ; Global climate models ; Global warming ; Humidity ; Hydrometers ; Marine ; Meteorology ; Microphysics ; Relative humidity ; Remote sensing ; Science ; Sea surface temperature ; Studies ; Subsidence ; Tropical climates ; Tropical environments</subject><ispartof>Journal of climate, 2012-03, Vol.25 (6), p.2178-2191</ispartof><rights>2012 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Mar 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</citedby><cites>FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191309$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191309$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25631157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Satoh, Masaki</creatorcontrib><creatorcontrib>Iga, Shin-Ichi</creatorcontrib><creatorcontrib>Tomita, Hirofumi</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Noda, Akira T.</creatorcontrib><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><title>Journal of climate</title><description>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</description><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Convection</subject><subject>Convection clouds</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>General circulation models</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Humidity</subject><subject>Hydrometers</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Science</subject><subject>Sea surface temperature</subject><subject>Studies</subject><subject>Subsidence</subject><subject>Tropical climates</subject><subject>Tropical environments</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EEkvhB3BAspCQuKR4nDiJj2hbStFCEWLF0XIch3rltYPHK9oj_7xeUkDiNLbne0_jeYQ8B3YK0Ik3H9aby-qsAqgYA8FP4QFZlcoq1jT8IVmxXjZV3wnxmDxB3BWIt4ytyK8vFucY0NI40e0820TXPh5GpC7QCx8H7ek3nfYufKfnN6Xt9jZkpFdD1i7YkW7x2NJ_2E8xXN-OKWLW2Rn6MY7W058uXx_V3hmXF3_6OUVjES0-JY8m7dE-u68nZPvu_Ov6fbW5urhcv91UpmEsV5NuuBxq2Y0D8L6rpeGyl7Lt5TCObd8IPpp-4FbXw1AuspmgBW7EOJV3raf6hLxefOcUfxwsZrV3aKz3Oth4QAUMOtlxDrygL_9Dd_GQQplOyabsTSwQLJApv8VkJzWX5eh0W5zUMRN1zESdlbP6nYmConl1b6zRaD8lHYzDv0Iu2hpAdIV7sXA7zDH967cgoWayvgMaSJbA</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Satoh, Masaki</creator><creator>Iga, Shin-Ichi</creator><creator>Tomita, Hirofumi</creator><creator>Tsushima, Yoko</creator><creator>Noda, Akira T.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>H97</scope></search><sort><creationdate>20120315</creationdate><title>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</title><author>Satoh, Masaki ; Iga, Shin-Ichi ; Tomita, Hirofumi ; Tsushima, Yoko ; Noda, Akira T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Convection</topic><topic>Convection clouds</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>General circulation models</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Humidity</topic><topic>Hydrometers</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Science</topic><topic>Sea surface temperature</topic><topic>Studies</topic><topic>Subsidence</topic><topic>Tropical climates</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satoh, Masaki</creatorcontrib><creatorcontrib>Iga, Shin-Ichi</creatorcontrib><creatorcontrib>Tomita, Hirofumi</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Noda, Akira T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satoh, Masaki</au><au>Iga, Shin-Ichi</au><au>Tomita, Hirofumi</au><au>Tsushima, Yoko</au><au>Noda, Akira T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes</atitle><jtitle>Journal of climate</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>25</volume><issue>6</issue><spage>2178</spage><epage>2191</epage><pages>2178-2191</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-11-00152.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2012-03, Vol.25 (6), p.2178-2191
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1017972212
source JSTOR Archival Journals and Primary Sources Collection
subjects Climate change
Climate models
Climatic conditions
Cloud cover
Clouds
Convection
Convection clouds
Earth, ocean, space
Exact sciences and technology
Experiments
External geophysics
Fluctuations
General circulation models
Global climate models
Global warming
Humidity
Hydrometers
Marine
Meteorology
Microphysics
Relative humidity
Remote sensing
Science
Sea surface temperature
Studies
Subsidence
Tropical climates
Tropical environments
title Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20Upper%20Clouds%20in%20Global%20Warming%20Experiments%20Obtained%20Using%20a%20Global%20Nonhydrostatic%20Model%20with%20Explicit%20Cloud%20Processes&rft.jtitle=Journal%20of%20climate&rft.au=Satoh,%20Masaki&rft.date=2012-03-15&rft.volume=25&rft.issue=6&rft.spage=2178&rft.epage=2191&rft.pages=2178-2191&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-11-00152.1&rft_dat=%3Cjstor_proqu%3E26191309%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fa429b397db128739c29899689bdd68452dc8b2ea3bb45294f1612c5dfdc8aaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=942605212&rft_id=info:pmid/&rft_jstor_id=26191309&rfr_iscdi=true