Loading…
Platinum-group and other traffic-related heavy metal contamination in road sediment, Guangzhou, China
Purpose Human exposure to particulate matter emitted from on-road motor vehicles includes complex mixtures of heavy metals from tyres, brakes, part wear, and resuspended road sediment. The purpose of this study was to determine the concentrations of 14 platinum-group and other traffic-related heavy...
Saved in:
Published in: | Journal of soils and sediments 2012-06, Vol.12 (6), p.942-951 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Human exposure to particulate matter emitted from on-road motor vehicles includes complex mixtures of heavy metals from tyres, brakes, part wear, and resuspended road sediment. The purpose of this study was to determine the concentrations of 14 platinum-group and other traffic-related heavy metals in road sediment within the metropolitan area of Guangzhou, China, with a view to identifying their sources and assessing the extent of anthropogenic influence on heavy metal contamination of road sediment.
Materials and methods
Thirty-five samples of road sediment were collected. The concentrations of Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, Ba, and Rh were measured by inductively coupled plasma–mass spectrometry. Pt and Pd were analyzed by isotopic dilution–inductively coupled plasma–mass spectrometry. Multivariate statistical analysis and enrichment factor methods were employed to identify the sources of these heavy metals and to assess anthropogenic influences on their occurrence.
Results and discussion
The mean concentrations of Pt, Pd, Rh, Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, and Ba in the road sediment samples were 68.24, 93.15, 23.85, 147.5, 712.3, 47.24, 177.5, 1254, 47.50, 96.62, 4.91, 3.00, 198.1, and 641.3 ng g
−1
, respectively. Very weak to significant linear positive correlations were found among the various heavy metals. The elemental composition of road sediment was dominated by five principal components. Three clusters were identified through cluster analysis, and enrichment factors were calculated relative to soils in China. The sources and degree of contamination of the heavy metals are discussed based on the results.
Conclusions
The mean concentrations of heavy metals are higher than background values, especially for Pt, Pd, Rh, Cd, and Zn. Four main sources are identified: (1) Pt, Pd, and Rh were derived from traffic sources; (2) La, Ce, Mn, and Ba were derived mainly from natural sources; (3) Cr, Ni, Cu, Mo, Cd, and Pb showed mixed traffic-industry sources; and (4) Zn originated mainly from industrial sources. Enrichment factor analysis supported this source identification and further indicated that contamination of road sediment in Guangzhou is extremely high for Pt, Pd, and Rh; moderate to very high for Cd, Zn, Pb, Cu, and Mo; and minimal for Cr, Ni, La, Ce, and Ba. |
---|---|
ISSN: | 1439-0108 1614-7480 |
DOI: | 10.1007/s11368-012-0527-8 |