Loading…
Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments
Radiofrequency (RF) thermokeratoplasty uses RF currents to alter the curvature of the cornea by means of thermal lesions. An RF applicator which combined a microkeratome suction ring and a circular electrode was designed with the aim of creating circular thermal lesions in a predictable, uniform and...
Saved in:
Published in: | Annals of biomedical engineering 2012-05, Vol.40 (5), p.1182-1191 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiofrequency (RF) thermokeratoplasty uses RF currents to alter the curvature of the cornea by means of thermal lesions. An RF applicator which combined a microkeratome suction ring and a circular electrode was designed with the aim of creating circular thermal lesions in a predictable, uniform and safe way. An experimental study was conducted on
ex vivo
porcine eyes. A theoretical model was also designed. The experimental results showed a lesion depth of 34.2 ± 11.0% of corneal thickness at a constant voltage of 50 V up to roll-off (1000 Ω of impedance). With a voltage of 30 V for 30 s the mean depth was 36.8 ± 8.1%. The progress of electrical impedance throughout heating and lesion dimensions were used to compare the experimental and theoretical results. Both the impedance evolution and lesion dimensions obtained from the theoretical model showed good agreement with the experimental findings. The findings suggest that the new applicator could be a suitable option for creating uniform circular thermal lesions. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1007/s10439-011-0492-1 |