Loading…
Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers
Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively...
Saved in:
Published in: | Journal of the American Chemical Society 2012-05, Vol.134 (21), p.8944-8957 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693 |
---|---|
cites | cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693 |
container_end_page | 8957 |
container_issue | 21 |
container_start_page | 8944 |
container_title | Journal of the American Chemical Society |
container_volume | 134 |
creator | Beaujuge, Pierre M Tsao, Hoi Nok Hansen, Michael Ryan Amb, Chad M Risko, Chad Subbiah, Jegadesan Choudhury, Kaushik Roy Mavrinskiy, Alexei Pisula, Wojciech Brédas, Jean-Luc So, Franky Müllen, Klaus Reynolds, John R |
description | Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications. |
doi_str_mv | 10.1021/ja301898h |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017982017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017982017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</originalsourceid><addsrcrecordid>eNpt0E1LwzAABuAgipsfB_-A9CLooZqPfuXoqk5hoOA8lzRJ14w2qUmLbCf_g__QX2JkcycvCXl5eCEvAGcIXiOI0c2SEYgymtV7YIxiDMMY4WQfjCGEOEyzhIzAkXNL_4xwhg7BCOMEpghFY9C8rnRfy17x4MUqzVXXSBfcKSt5r_QiyGtmFzKYW6ZdZ2wfKB3MzEc4YVqEU9Z52tdKauNUYxr5_fk1kXptfMaEYmsfBbnpTLNqpXUn4KBijZOn2_sYvD3cz_PHcPY8fcpvZyEjKO5DQmkVRZmIOJYVY4JSKipJRYkQIUlclSlJfBBVDCZM4JITjHiZ4qqMs4gmlByDy01vZ837IF1ftMpx2TRMSzO4AkGU0gz709OrDeXWOGdlVXRWtcyuPCp-xy1243p7vq0dylaKnfxb04OLDWDcFUszWO1_-U_RD_vzg40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017982017</pqid></control><display><type>article</type><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</creator><creatorcontrib>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</creatorcontrib><description>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja301898h</identifier><identifier>PMID: 22607114</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2012-05, Vol.134 (21), p.8944-8957</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</citedby><cites>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22607114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaujuge, Pierre M</creatorcontrib><creatorcontrib>Tsao, Hoi Nok</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Amb, Chad M</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Subbiah, Jegadesan</creatorcontrib><creatorcontrib>Choudhury, Kaushik Roy</creatorcontrib><creatorcontrib>Mavrinskiy, Alexei</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LwzAABuAgipsfB_-A9CLooZqPfuXoqk5hoOA8lzRJ14w2qUmLbCf_g__QX2JkcycvCXl5eCEvAGcIXiOI0c2SEYgymtV7YIxiDMMY4WQfjCGEOEyzhIzAkXNL_4xwhg7BCOMEpghFY9C8rnRfy17x4MUqzVXXSBfcKSt5r_QiyGtmFzKYW6ZdZ2wfKB3MzEc4YVqEU9Z52tdKauNUYxr5_fk1kXptfMaEYmsfBbnpTLNqpXUn4KBijZOn2_sYvD3cz_PHcPY8fcpvZyEjKO5DQmkVRZmIOJYVY4JSKipJRYkQIUlclSlJfBBVDCZM4JITjHiZ4qqMs4gmlByDy01vZ837IF1ftMpx2TRMSzO4AkGU0gz709OrDeXWOGdlVXRWtcyuPCp-xy1243p7vq0dylaKnfxb04OLDWDcFUszWO1_-U_RD_vzg40</recordid><startdate>20120530</startdate><enddate>20120530</enddate><creator>Beaujuge, Pierre M</creator><creator>Tsao, Hoi Nok</creator><creator>Hansen, Michael Ryan</creator><creator>Amb, Chad M</creator><creator>Risko, Chad</creator><creator>Subbiah, Jegadesan</creator><creator>Choudhury, Kaushik Roy</creator><creator>Mavrinskiy, Alexei</creator><creator>Pisula, Wojciech</creator><creator>Brédas, Jean-Luc</creator><creator>So, Franky</creator><creator>Müllen, Klaus</creator><creator>Reynolds, John R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120530</creationdate><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><author>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaujuge, Pierre M</creatorcontrib><creatorcontrib>Tsao, Hoi Nok</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Amb, Chad M</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Subbiah, Jegadesan</creatorcontrib><creatorcontrib>Choudhury, Kaushik Roy</creatorcontrib><creatorcontrib>Mavrinskiy, Alexei</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaujuge, Pierre M</au><au>Tsao, Hoi Nok</au><au>Hansen, Michael Ryan</au><au>Amb, Chad M</au><au>Risko, Chad</au><au>Subbiah, Jegadesan</au><au>Choudhury, Kaushik Roy</au><au>Mavrinskiy, Alexei</au><au>Pisula, Wojciech</au><au>Brédas, Jean-Luc</au><au>So, Franky</au><au>Müllen, Klaus</au><au>Reynolds, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-05-30</date><risdate>2012</risdate><volume>134</volume><issue>21</issue><spage>8944</spage><epage>8957</epage><pages>8944-8957</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22607114</pmid><doi>10.1021/ja301898h</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2012-05, Vol.134 (21), p.8944-8957 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017982017 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Principles%20Directing%20Charge%20Transport%20in%20Low-Band-Gap%20Dithienosilole%E2%80%93Benzothiadiazole%20Copolymers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Beaujuge,%20Pierre%20M&rft.date=2012-05-30&rft.volume=134&rft.issue=21&rft.spage=8944&rft.epage=8957&rft.pages=8944-8957&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja301898h&rft_dat=%3Cproquest_cross%3E1017982017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017982017&rft_id=info:pmid/22607114&rfr_iscdi=true |