Loading…

Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers

Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-05, Vol.134 (21), p.8944-8957
Main Authors: Beaujuge, Pierre M, Tsao, Hoi Nok, Hansen, Michael Ryan, Amb, Chad M, Risko, Chad, Subbiah, Jegadesan, Choudhury, Kaushik Roy, Mavrinskiy, Alexei, Pisula, Wojciech, Brédas, Jean-Luc, So, Franky, Müllen, Klaus, Reynolds, John R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693
cites cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693
container_end_page 8957
container_issue 21
container_start_page 8944
container_title Journal of the American Chemical Society
container_volume 134
creator Beaujuge, Pierre M
Tsao, Hoi Nok
Hansen, Michael Ryan
Amb, Chad M
Risko, Chad
Subbiah, Jegadesan
Choudhury, Kaushik Roy
Mavrinskiy, Alexei
Pisula, Wojciech
Brédas, Jean-Luc
So, Franky
Müllen, Klaus
Reynolds, John R
description Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.
doi_str_mv 10.1021/ja301898h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017982017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017982017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</originalsourceid><addsrcrecordid>eNpt0E1LwzAABuAgipsfB_-A9CLooZqPfuXoqk5hoOA8lzRJ14w2qUmLbCf_g__QX2JkcycvCXl5eCEvAGcIXiOI0c2SEYgymtV7YIxiDMMY4WQfjCGEOEyzhIzAkXNL_4xwhg7BCOMEpghFY9C8rnRfy17x4MUqzVXXSBfcKSt5r_QiyGtmFzKYW6ZdZ2wfKB3MzEc4YVqEU9Z52tdKauNUYxr5_fk1kXptfMaEYmsfBbnpTLNqpXUn4KBijZOn2_sYvD3cz_PHcPY8fcpvZyEjKO5DQmkVRZmIOJYVY4JSKipJRYkQIUlclSlJfBBVDCZM4JITjHiZ4qqMs4gmlByDy01vZ837IF1ftMpx2TRMSzO4AkGU0gz709OrDeXWOGdlVXRWtcyuPCp-xy1243p7vq0dylaKnfxb04OLDWDcFUszWO1_-U_RD_vzg40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017982017</pqid></control><display><type>article</type><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</creator><creatorcontrib>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</creatorcontrib><description>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja301898h</identifier><identifier>PMID: 22607114</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2012-05, Vol.134 (21), p.8944-8957</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</citedby><cites>FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22607114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaujuge, Pierre M</creatorcontrib><creatorcontrib>Tsao, Hoi Nok</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Amb, Chad M</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Subbiah, Jegadesan</creatorcontrib><creatorcontrib>Choudhury, Kaushik Roy</creatorcontrib><creatorcontrib>Mavrinskiy, Alexei</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LwzAABuAgipsfB_-A9CLooZqPfuXoqk5hoOA8lzRJ14w2qUmLbCf_g__QX2JkcycvCXl5eCEvAGcIXiOI0c2SEYgymtV7YIxiDMMY4WQfjCGEOEyzhIzAkXNL_4xwhg7BCOMEpghFY9C8rnRfy17x4MUqzVXXSBfcKSt5r_QiyGtmFzKYW6ZdZ2wfKB3MzEc4YVqEU9Z52tdKauNUYxr5_fk1kXptfMaEYmsfBbnpTLNqpXUn4KBijZOn2_sYvD3cz_PHcPY8fcpvZyEjKO5DQmkVRZmIOJYVY4JSKipJRYkQIUlclSlJfBBVDCZM4JITjHiZ4qqMs4gmlByDy01vZ837IF1ftMpx2TRMSzO4AkGU0gz709OrDeXWOGdlVXRWtcyuPCp-xy1243p7vq0dylaKnfxb04OLDWDcFUszWO1_-U_RD_vzg40</recordid><startdate>20120530</startdate><enddate>20120530</enddate><creator>Beaujuge, Pierre M</creator><creator>Tsao, Hoi Nok</creator><creator>Hansen, Michael Ryan</creator><creator>Amb, Chad M</creator><creator>Risko, Chad</creator><creator>Subbiah, Jegadesan</creator><creator>Choudhury, Kaushik Roy</creator><creator>Mavrinskiy, Alexei</creator><creator>Pisula, Wojciech</creator><creator>Brédas, Jean-Luc</creator><creator>So, Franky</creator><creator>Müllen, Klaus</creator><creator>Reynolds, John R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120530</creationdate><title>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</title><author>Beaujuge, Pierre M ; Tsao, Hoi Nok ; Hansen, Michael Ryan ; Amb, Chad M ; Risko, Chad ; Subbiah, Jegadesan ; Choudhury, Kaushik Roy ; Mavrinskiy, Alexei ; Pisula, Wojciech ; Brédas, Jean-Luc ; So, Franky ; Müllen, Klaus ; Reynolds, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaujuge, Pierre M</creatorcontrib><creatorcontrib>Tsao, Hoi Nok</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Amb, Chad M</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Subbiah, Jegadesan</creatorcontrib><creatorcontrib>Choudhury, Kaushik Roy</creatorcontrib><creatorcontrib>Mavrinskiy, Alexei</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaujuge, Pierre M</au><au>Tsao, Hoi Nok</au><au>Hansen, Michael Ryan</au><au>Amb, Chad M</au><au>Risko, Chad</au><au>Subbiah, Jegadesan</au><au>Choudhury, Kaushik Roy</au><au>Mavrinskiy, Alexei</au><au>Pisula, Wojciech</au><au>Brédas, Jean-Luc</au><au>So, Franky</au><au>Müllen, Klaus</au><au>Reynolds, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-05-30</date><risdate>2012</risdate><volume>134</volume><issue>21</issue><spage>8944</spage><epage>8957</epage><pages>8944-8957</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following “donor–acceptor” principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm2 V–1 s–1 with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC71BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10–3 cm2 V–1 s–1, and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure–performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22607114</pmid><doi>10.1021/ja301898h</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-05, Vol.134 (21), p.8944-8957
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1017982017
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Principles%20Directing%20Charge%20Transport%20in%20Low-Band-Gap%20Dithienosilole%E2%80%93Benzothiadiazole%20Copolymers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Beaujuge,%20Pierre%20M&rft.date=2012-05-30&rft.volume=134&rft.issue=21&rft.spage=8944&rft.epage=8957&rft.pages=8944-8957&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja301898h&rft_dat=%3Cproquest_cross%3E1017982017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-399f448d4c2efaad999dfe9db113365fb736dfe4fa06ad2bc321cb72fb5849693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017982017&rft_id=info:pmid/22607114&rfr_iscdi=true