Loading…
Implant-guided vertical bone growth in the mini-pig
Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty...
Saved in:
Published in: | Clinical oral implants research 2012-06, Vol.23 (6), p.751-757 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3 |
container_end_page | 757 |
container_issue | 6 |
container_start_page | 751 |
container_title | Clinical oral implants research |
container_volume | 23 |
creator | Freilich, Martin Wen, Bo Shafer, David Schleier, Peter Dard, Michel Pendrys, David Ortiz, Denise Kuhn, Liisa |
description | Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer.
Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology.
Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05).
Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer. |
doi_str_mv | 10.1111/j.1600-0501.2011.02199.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1018347803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039165768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</originalsourceid><addsrcrecordid>eNqNkTtv2zAUhYmgReK6-QuFgC5dpFyK4mvoUBtNGsBogsJARoKiaJuuHi4pJfa_LxUnHjKFCwnwO4e85yCUYMhwXFfbDDOAFCjgLAeMM8ixlNn-DE1OFx_QBCTQlGOGL9CnELYAwKSQ5-gixwIDzvEEkdtmV-u2T9eDq2yVPFrfO6PrpOxam6x999RvEtcm_cYmjWtdunPrz-jjStfBXr7sU7S8_rmc_0oXdze38x-L1BRMyFTmjFkQhuUF4WZVkbLUglPOdW51wTXGlSxtCdIwYYBTsEKaVSkINZWgFZmib0fbne_-DTb0qnHB2Dp-13ZDUHECQQougLwHLUBKQWlEv75Bt93g2ziHyoFIzChnIlLiSBnfheDtSu28a7Q_RCs1VqC2akxajUmrsQL1XIHaR-mXlweGsrHVSfiaeQS-H4EnV9vDu43VfPFnPEV9etS70Nv9Sa_9X8U44VQ9_L5R7H52zZZkpiT5D11joJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039165768</pqid></control><display><type>article</type><title>Implant-guided vertical bone growth in the mini-pig</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</creator><creatorcontrib>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</creatorcontrib><description>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer.
Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology.
Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05).
Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</description><identifier>ISSN: 0905-7161</identifier><identifier>EISSN: 1600-0501</identifier><identifier>DOI: 10.1111/j.1600-0501.2011.02199.x</identifier><identifier>PMID: 21810121</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; biomaterial scaffold ; Biomaterials ; Bone growth ; Bone healing ; Bone implants ; Bone Morphogenetic Protein 2 - pharmacology ; Bone Regeneration - physiology ; Computed tomography ; Dental Abutments ; Dental Implantation, Endosseous - methods ; Dental Implants ; Dental materials ; Dental Prosthesis Design ; Dental prosthetics ; Dental restorative materials ; Dentistry ; Healing ; Histology ; Mandible ; Mandible - surgery ; Neck ; ng/rhBMP-2 ; Proteins ; Recombinant Proteins - pharmacology ; Regeneration ; Regeneration (physiology) ; scaffold retainer ; Scaffolds ; Statistics, Nonparametric ; Surgical implants ; Swine ; Swine, Miniature ; Tissue engineering ; Tissue Scaffolds ; Titanium ; Titanium - chemistry ; Titanium base alloys ; Transforming Growth Factor beta - pharmacology ; Transplants & implants ; Vertical Dimension ; vertical supracrestal bone growth ; Wound Healing ; X-Ray Microtomography ; Zirconium ; Zirconium - chemistry</subject><ispartof>Clinical oral implants research, 2012-06, Vol.23 (6), p.751-757</ispartof><rights>2011 John Wiley & Sons A/S</rights><rights>2011 John Wiley & Sons A/S.</rights><rights>Copyright © 2012 John Wiley & Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</citedby><cites>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21810121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freilich, Martin</creatorcontrib><creatorcontrib>Wen, Bo</creatorcontrib><creatorcontrib>Shafer, David</creatorcontrib><creatorcontrib>Schleier, Peter</creatorcontrib><creatorcontrib>Dard, Michel</creatorcontrib><creatorcontrib>Pendrys, David</creatorcontrib><creatorcontrib>Ortiz, Denise</creatorcontrib><creatorcontrib>Kuhn, Liisa</creatorcontrib><title>Implant-guided vertical bone growth in the mini-pig</title><title>Clinical oral implants research</title><addtitle>Clin Oral Implants Res</addtitle><description>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer.
Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology.
Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05).
Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</description><subject>Animals</subject><subject>biomaterial scaffold</subject><subject>Biomaterials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Bone Regeneration - physiology</subject><subject>Computed tomography</subject><subject>Dental Abutments</subject><subject>Dental Implantation, Endosseous - methods</subject><subject>Dental Implants</subject><subject>Dental materials</subject><subject>Dental Prosthesis Design</subject><subject>Dental prosthetics</subject><subject>Dental restorative materials</subject><subject>Dentistry</subject><subject>Healing</subject><subject>Histology</subject><subject>Mandible</subject><subject>Mandible - surgery</subject><subject>Neck</subject><subject>ng/rhBMP-2</subject><subject>Proteins</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>scaffold retainer</subject><subject>Scaffolds</subject><subject>Statistics, Nonparametric</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Swine, Miniature</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transplants & implants</subject><subject>Vertical Dimension</subject><subject>vertical supracrestal bone growth</subject><subject>Wound Healing</subject><subject>X-Ray Microtomography</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><issn>0905-7161</issn><issn>1600-0501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkTtv2zAUhYmgReK6-QuFgC5dpFyK4mvoUBtNGsBogsJARoKiaJuuHi4pJfa_LxUnHjKFCwnwO4e85yCUYMhwXFfbDDOAFCjgLAeMM8ixlNn-DE1OFx_QBCTQlGOGL9CnELYAwKSQ5-gixwIDzvEEkdtmV-u2T9eDq2yVPFrfO6PrpOxam6x999RvEtcm_cYmjWtdunPrz-jjStfBXr7sU7S8_rmc_0oXdze38x-L1BRMyFTmjFkQhuUF4WZVkbLUglPOdW51wTXGlSxtCdIwYYBTsEKaVSkINZWgFZmib0fbne_-DTb0qnHB2Dp-13ZDUHECQQougLwHLUBKQWlEv75Bt93g2ziHyoFIzChnIlLiSBnfheDtSu28a7Q_RCs1VqC2akxajUmrsQL1XIHaR-mXlweGsrHVSfiaeQS-H4EnV9vDu43VfPFnPEV9etS70Nv9Sa_9X8U44VQ9_L5R7H52zZZkpiT5D11joJc</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Freilich, Martin</creator><creator>Wen, Bo</creator><creator>Shafer, David</creator><creator>Schleier, Peter</creator><creator>Dard, Michel</creator><creator>Pendrys, David</creator><creator>Ortiz, Denise</creator><creator>Kuhn, Liisa</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>Implant-guided vertical bone growth in the mini-pig</title><author>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>biomaterial scaffold</topic><topic>Biomaterials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Bone Regeneration - physiology</topic><topic>Computed tomography</topic><topic>Dental Abutments</topic><topic>Dental Implantation, Endosseous - methods</topic><topic>Dental Implants</topic><topic>Dental materials</topic><topic>Dental Prosthesis Design</topic><topic>Dental prosthetics</topic><topic>Dental restorative materials</topic><topic>Dentistry</topic><topic>Healing</topic><topic>Histology</topic><topic>Mandible</topic><topic>Mandible - surgery</topic><topic>Neck</topic><topic>ng/rhBMP-2</topic><topic>Proteins</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>scaffold retainer</topic><topic>Scaffolds</topic><topic>Statistics, Nonparametric</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Swine, Miniature</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transplants & implants</topic><topic>Vertical Dimension</topic><topic>vertical supracrestal bone growth</topic><topic>Wound Healing</topic><topic>X-Ray Microtomography</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freilich, Martin</creatorcontrib><creatorcontrib>Wen, Bo</creatorcontrib><creatorcontrib>Shafer, David</creatorcontrib><creatorcontrib>Schleier, Peter</creatorcontrib><creatorcontrib>Dard, Michel</creatorcontrib><creatorcontrib>Pendrys, David</creatorcontrib><creatorcontrib>Ortiz, Denise</creatorcontrib><creatorcontrib>Kuhn, Liisa</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical oral implants research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freilich, Martin</au><au>Wen, Bo</au><au>Shafer, David</au><au>Schleier, Peter</au><au>Dard, Michel</au><au>Pendrys, David</au><au>Ortiz, Denise</au><au>Kuhn, Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implant-guided vertical bone growth in the mini-pig</atitle><jtitle>Clinical oral implants research</jtitle><addtitle>Clin Oral Implants Res</addtitle><date>2012-06</date><risdate>2012</risdate><volume>23</volume><issue>6</issue><spage>751</spage><epage>757</epage><pages>751-757</pages><issn>0905-7161</issn><eissn>1600-0501</eissn><abstract>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer.
Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology.
Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05).
Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21810121</pmid><doi>10.1111/j.1600-0501.2011.02199.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0905-7161 |
ispartof | Clinical oral implants research, 2012-06, Vol.23 (6), p.751-757 |
issn | 0905-7161 1600-0501 |
language | eng |
recordid | cdi_proquest_miscellaneous_1018347803 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals biomaterial scaffold Biomaterials Bone growth Bone healing Bone implants Bone Morphogenetic Protein 2 - pharmacology Bone Regeneration - physiology Computed tomography Dental Abutments Dental Implantation, Endosseous - methods Dental Implants Dental materials Dental Prosthesis Design Dental prosthetics Dental restorative materials Dentistry Healing Histology Mandible Mandible - surgery Neck ng/rhBMP-2 Proteins Recombinant Proteins - pharmacology Regeneration Regeneration (physiology) scaffold retainer Scaffolds Statistics, Nonparametric Surgical implants Swine Swine, Miniature Tissue engineering Tissue Scaffolds Titanium Titanium - chemistry Titanium base alloys Transforming Growth Factor beta - pharmacology Transplants & implants Vertical Dimension vertical supracrestal bone growth Wound Healing X-Ray Microtomography Zirconium Zirconium - chemistry |
title | Implant-guided vertical bone growth in the mini-pig |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implant-guided%20vertical%20bone%20growth%20in%20the%20mini-pig&rft.jtitle=Clinical%20oral%20implants%20research&rft.au=Freilich,%20Martin&rft.date=2012-06&rft.volume=23&rft.issue=6&rft.spage=751&rft.epage=757&rft.pages=751-757&rft.issn=0905-7161&rft.eissn=1600-0501&rft_id=info:doi/10.1111/j.1600-0501.2011.02199.x&rft_dat=%3Cproquest_cross%3E2039165768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039165768&rft_id=info:pmid/21810121&rfr_iscdi=true |