Loading…

Implant-guided vertical bone growth in the mini-pig

Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty...

Full description

Saved in:
Bibliographic Details
Published in:Clinical oral implants research 2012-06, Vol.23 (6), p.751-757
Main Authors: Freilich, Martin, Wen, Bo, Shafer, David, Schleier, Peter, Dard, Michel, Pendrys, David, Ortiz, Denise, Kuhn, Liisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3
cites cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3
container_end_page 757
container_issue 6
container_start_page 751
container_title Clinical oral implants research
container_volume 23
creator Freilich, Martin
Wen, Bo
Shafer, David
Schleier, Peter
Dard, Michel
Pendrys, David
Ortiz, Denise
Kuhn, Liisa
description Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology. Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05). Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.
doi_str_mv 10.1111/j.1600-0501.2011.02199.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1018347803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039165768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</originalsourceid><addsrcrecordid>eNqNkTtv2zAUhYmgReK6-QuFgC5dpFyK4mvoUBtNGsBogsJARoKiaJuuHi4pJfa_LxUnHjKFCwnwO4e85yCUYMhwXFfbDDOAFCjgLAeMM8ixlNn-DE1OFx_QBCTQlGOGL9CnELYAwKSQ5-gixwIDzvEEkdtmV-u2T9eDq2yVPFrfO6PrpOxam6x999RvEtcm_cYmjWtdunPrz-jjStfBXr7sU7S8_rmc_0oXdze38x-L1BRMyFTmjFkQhuUF4WZVkbLUglPOdW51wTXGlSxtCdIwYYBTsEKaVSkINZWgFZmib0fbne_-DTb0qnHB2Dp-13ZDUHECQQougLwHLUBKQWlEv75Bt93g2ziHyoFIzChnIlLiSBnfheDtSu28a7Q_RCs1VqC2akxajUmrsQL1XIHaR-mXlweGsrHVSfiaeQS-H4EnV9vDu43VfPFnPEV9etS70Nv9Sa_9X8U44VQ9_L5R7H52zZZkpiT5D11joJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039165768</pqid></control><display><type>article</type><title>Implant-guided vertical bone growth in the mini-pig</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</creator><creatorcontrib>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</creatorcontrib><description>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology. Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05). Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</description><identifier>ISSN: 0905-7161</identifier><identifier>EISSN: 1600-0501</identifier><identifier>DOI: 10.1111/j.1600-0501.2011.02199.x</identifier><identifier>PMID: 21810121</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; biomaterial scaffold ; Biomaterials ; Bone growth ; Bone healing ; Bone implants ; Bone Morphogenetic Protein 2 - pharmacology ; Bone Regeneration - physiology ; Computed tomography ; Dental Abutments ; Dental Implantation, Endosseous - methods ; Dental Implants ; Dental materials ; Dental Prosthesis Design ; Dental prosthetics ; Dental restorative materials ; Dentistry ; Healing ; Histology ; Mandible ; Mandible - surgery ; Neck ; ng/rhBMP-2 ; Proteins ; Recombinant Proteins - pharmacology ; Regeneration ; Regeneration (physiology) ; scaffold retainer ; Scaffolds ; Statistics, Nonparametric ; Surgical implants ; Swine ; Swine, Miniature ; Tissue engineering ; Tissue Scaffolds ; Titanium ; Titanium - chemistry ; Titanium base alloys ; Transforming Growth Factor beta - pharmacology ; Transplants &amp; implants ; Vertical Dimension ; vertical supracrestal bone growth ; Wound Healing ; X-Ray Microtomography ; Zirconium ; Zirconium - chemistry</subject><ispartof>Clinical oral implants research, 2012-06, Vol.23 (6), p.751-757</ispartof><rights>2011 John Wiley &amp; Sons A/S</rights><rights>2011 John Wiley &amp; Sons A/S.</rights><rights>Copyright © 2012 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</citedby><cites>FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21810121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freilich, Martin</creatorcontrib><creatorcontrib>Wen, Bo</creatorcontrib><creatorcontrib>Shafer, David</creatorcontrib><creatorcontrib>Schleier, Peter</creatorcontrib><creatorcontrib>Dard, Michel</creatorcontrib><creatorcontrib>Pendrys, David</creatorcontrib><creatorcontrib>Ortiz, Denise</creatorcontrib><creatorcontrib>Kuhn, Liisa</creatorcontrib><title>Implant-guided vertical bone growth in the mini-pig</title><title>Clinical oral implants research</title><addtitle>Clin Oral Implants Res</addtitle><description>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology. Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05). Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</description><subject>Animals</subject><subject>biomaterial scaffold</subject><subject>Biomaterials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Bone Regeneration - physiology</subject><subject>Computed tomography</subject><subject>Dental Abutments</subject><subject>Dental Implantation, Endosseous - methods</subject><subject>Dental Implants</subject><subject>Dental materials</subject><subject>Dental Prosthesis Design</subject><subject>Dental prosthetics</subject><subject>Dental restorative materials</subject><subject>Dentistry</subject><subject>Healing</subject><subject>Histology</subject><subject>Mandible</subject><subject>Mandible - surgery</subject><subject>Neck</subject><subject>ng/rhBMP-2</subject><subject>Proteins</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>scaffold retainer</subject><subject>Scaffolds</subject><subject>Statistics, Nonparametric</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Swine, Miniature</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transplants &amp; implants</subject><subject>Vertical Dimension</subject><subject>vertical supracrestal bone growth</subject><subject>Wound Healing</subject><subject>X-Ray Microtomography</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><issn>0905-7161</issn><issn>1600-0501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkTtv2zAUhYmgReK6-QuFgC5dpFyK4mvoUBtNGsBogsJARoKiaJuuHi4pJfa_LxUnHjKFCwnwO4e85yCUYMhwXFfbDDOAFCjgLAeMM8ixlNn-DE1OFx_QBCTQlGOGL9CnELYAwKSQ5-gixwIDzvEEkdtmV-u2T9eDq2yVPFrfO6PrpOxam6x999RvEtcm_cYmjWtdunPrz-jjStfBXr7sU7S8_rmc_0oXdze38x-L1BRMyFTmjFkQhuUF4WZVkbLUglPOdW51wTXGlSxtCdIwYYBTsEKaVSkINZWgFZmib0fbne_-DTb0qnHB2Dp-13ZDUHECQQougLwHLUBKQWlEv75Bt93g2ziHyoFIzChnIlLiSBnfheDtSu28a7Q_RCs1VqC2akxajUmrsQL1XIHaR-mXlweGsrHVSfiaeQS-H4EnV9vDu43VfPFnPEV9etS70Nv9Sa_9X8U44VQ9_L5R7H52zZZkpiT5D11joJc</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Freilich, Martin</creator><creator>Wen, Bo</creator><creator>Shafer, David</creator><creator>Schleier, Peter</creator><creator>Dard, Michel</creator><creator>Pendrys, David</creator><creator>Ortiz, Denise</creator><creator>Kuhn, Liisa</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>Implant-guided vertical bone growth in the mini-pig</title><author>Freilich, Martin ; Wen, Bo ; Shafer, David ; Schleier, Peter ; Dard, Michel ; Pendrys, David ; Ortiz, Denise ; Kuhn, Liisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>biomaterial scaffold</topic><topic>Biomaterials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Bone Regeneration - physiology</topic><topic>Computed tomography</topic><topic>Dental Abutments</topic><topic>Dental Implantation, Endosseous - methods</topic><topic>Dental Implants</topic><topic>Dental materials</topic><topic>Dental Prosthesis Design</topic><topic>Dental prosthetics</topic><topic>Dental restorative materials</topic><topic>Dentistry</topic><topic>Healing</topic><topic>Histology</topic><topic>Mandible</topic><topic>Mandible - surgery</topic><topic>Neck</topic><topic>ng/rhBMP-2</topic><topic>Proteins</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>scaffold retainer</topic><topic>Scaffolds</topic><topic>Statistics, Nonparametric</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Swine, Miniature</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transplants &amp; implants</topic><topic>Vertical Dimension</topic><topic>vertical supracrestal bone growth</topic><topic>Wound Healing</topic><topic>X-Ray Microtomography</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freilich, Martin</creatorcontrib><creatorcontrib>Wen, Bo</creatorcontrib><creatorcontrib>Shafer, David</creatorcontrib><creatorcontrib>Schleier, Peter</creatorcontrib><creatorcontrib>Dard, Michel</creatorcontrib><creatorcontrib>Pendrys, David</creatorcontrib><creatorcontrib>Ortiz, Denise</creatorcontrib><creatorcontrib>Kuhn, Liisa</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical oral implants research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freilich, Martin</au><au>Wen, Bo</au><au>Shafer, David</au><au>Schleier, Peter</au><au>Dard, Michel</au><au>Pendrys, David</au><au>Ortiz, Denise</au><au>Kuhn, Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implant-guided vertical bone growth in the mini-pig</atitle><jtitle>Clinical oral implants research</jtitle><addtitle>Clin Oral Implants Res</addtitle><date>2012-06</date><risdate>2012</risdate><volume>23</volume><issue>6</issue><spage>751</spage><epage>757</epage><pages>751-757</pages><issn>0905-7161</issn><eissn>1600-0501</eissn><abstract>Objective: To attain and describe guided vertical bone regeneration around titanium (Ti) and titanium zirconium (Ti–Zr) dental implants utilizing non‐glycosylated recombinant human bone morphogenetic protein‐2 (ng/rhBMP‐2), biomaterial scaffolds and a scaffold retainer. Materials and methods: Thirty‐two modified Straumann TE implants were partially embedded in the mandibles of eight adult mini‐pigs. Pre‐shaped resorbable scaffolds were placed around the implant and shielded and stabilized with a newly developed Ti custom scaffold retainer (umbrella) or wide‐neck (WN) healing caps to stabilize the scaffold. Ng/rhBMP‐2 (50 μg) was applied to the supracrestal portion of the implant or incorporated within the scaffold. At 9 weeks, soft tissue healing was assessed. Vertical bone regeneration outcomes including bone height, bone‐to‐implant contact (BIC) and bone volume were assessed by micro‐computed tomography and histology. Results: Soft tissue healing at the test sites (+ng/rhBMP‐2/+scaffold) appeared to be substantially better than the control sites (−ng/rhBMP‐2/−scaffold). Bone height, BIC percentage and bone volume were all similar regardless of whether WN healing caps or umbrella scaffold stabilization was used for all biomaterial scaffolds tested. WN healing cap test sites showed greater new bone height and BIC as compared with aggregate data from the control sites (P=0.05). Comparison of aggregate data from the umbrella test sites showed greater BIC and new bone volume as compared with aggregate data from the control sites(P=0.05). Conclusion: Vertical bone regeneration was successfully attained utilizing ng/rhBMP‐2, biomaterial scaffolds and a scaffold retainer.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21810121</pmid><doi>10.1111/j.1600-0501.2011.02199.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0905-7161
ispartof Clinical oral implants research, 2012-06, Vol.23 (6), p.751-757
issn 0905-7161
1600-0501
language eng
recordid cdi_proquest_miscellaneous_1018347803
source Wiley-Blackwell Read & Publish Collection
subjects Animals
biomaterial scaffold
Biomaterials
Bone growth
Bone healing
Bone implants
Bone Morphogenetic Protein 2 - pharmacology
Bone Regeneration - physiology
Computed tomography
Dental Abutments
Dental Implantation, Endosseous - methods
Dental Implants
Dental materials
Dental Prosthesis Design
Dental prosthetics
Dental restorative materials
Dentistry
Healing
Histology
Mandible
Mandible - surgery
Neck
ng/rhBMP-2
Proteins
Recombinant Proteins - pharmacology
Regeneration
Regeneration (physiology)
scaffold retainer
Scaffolds
Statistics, Nonparametric
Surgical implants
Swine
Swine, Miniature
Tissue engineering
Tissue Scaffolds
Titanium
Titanium - chemistry
Titanium base alloys
Transforming Growth Factor beta - pharmacology
Transplants & implants
Vertical Dimension
vertical supracrestal bone growth
Wound Healing
X-Ray Microtomography
Zirconium
Zirconium - chemistry
title Implant-guided vertical bone growth in the mini-pig
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implant-guided%20vertical%20bone%20growth%20in%20the%20mini-pig&rft.jtitle=Clinical%20oral%20implants%20research&rft.au=Freilich,%20Martin&rft.date=2012-06&rft.volume=23&rft.issue=6&rft.spage=751&rft.epage=757&rft.pages=751-757&rft.issn=0905-7161&rft.eissn=1600-0501&rft_id=info:doi/10.1111/j.1600-0501.2011.02199.x&rft_dat=%3Cproquest_cross%3E2039165768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4689-9266e08c62437cfd3bba87577a2ea47a11d9beb09c68c0750e89cfb835cd85d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039165768&rft_id=info:pmid/21810121&rfr_iscdi=true