Loading…
THE HEAT-KERNEL MOST-LIKELY-PATH APPROXIMATION
In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of...
Saved in:
Published in: | International journal of theoretical and applied finance 2012-02, Vol.15 (1), p.1250001-125000118 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&P500 local volatility function. |
---|---|
ISSN: | 0219-0249 1793-6322 |
DOI: | 10.1142/S021902491250001X |