Loading…
A special correcting winding for the l=2 torsatron with split-type helical coils
A split-type special correcting winding (split-type SCW) for the l=2 torsatron toroidal magnetic system with split-type helical coils is considered. The split-type SCW gives the possibility of controlling the position of the magnetic surface configuration in the direction perpendicular to the torus...
Saved in:
Published in: | Fusion engineering and design 2012-02, Vol.87 (2), p.118-123 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A split-type special correcting winding (split-type SCW) for the l=2 torsatron toroidal magnetic system with split-type helical coils is considered. The split-type SCW gives the possibility of controlling the position of the magnetic surface configuration in the direction perpendicular to the torus equatorial plane. Numerical simulations were carried out to investigate the influence of the split-type SCW magnetic field on centered and distant relative to the torus surface magnetic surface configuration with a plane magnetic axis, being promising for the fusion reactor. The configuration is realized in the l=2 torsatron with split-type helical coils and with the coils of an additional toroidal magnetic field. The calculations show that the split-type SCW magnetic field influence on the initial magnetic surface configuration leads mainly to the magnetic surface configuration displacement along the straight z axis of torus rotation. The displacement of ∼0.1a, a is the minor radius of the torus, has no critical effect on the magnetic surface parameters. An idea on the split-type SCW magnetic field structure is obtained by numerical simulations of the effect of this field as a minority magnetic field imposed on the magnetic field of a well-known configuration. The split-type SCW magnetic field is directed, predominantly along the major radius of the torus within its volume. The displacement range of the closed magnetic surface configuration depends on the split-type SCW magnetic field value. |
---|---|
ISSN: | 0920-3796 1873-7196 |
DOI: | 10.1016/j.fusengdes.2011.11.001 |