Loading…
Distributed \alpha -Optimal User Association and Cell Load Balancing in Wireless Networks
In this paper, we develop a framework for user association in infrastructure-based wireless networks, specifically focused on flow-level cell load balancing under spatially inhomogeneous traffic distributions. Our work encompasses several different user association policies: rate-optimal, throughput...
Saved in:
Published in: | IEEE/ACM transactions on networking 2012-02, Vol.20 (1), p.177-190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we develop a framework for user association in infrastructure-based wireless networks, specifically focused on flow-level cell load balancing under spatially inhomogeneous traffic distributions. Our work encompasses several different user association policies: rate-optimal, throughput-optimal, delay-optimal, and load-equalizing, which we collectively denote α-optimal user association. We prove that the optimal load vector ρ * that minimizes a generalized system performance function is the fixed point of a certain mapping. Based on this mapping, we propose and analyze an iterative distributed user association policy that adapts to spatial traffic loads and converges to a globally optimal allocation. We then address admission control policies for the case where the system is overloaded. For an appropriate system-level cost function, the optimal admission control policy blocks all flows at cells edges. However, providing a minimum level of connectivity to all spatial locations might be desirable. To this end, a location-dependent random blocking and user association policy are proposed. |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2011.2157937 |