Loading…

A framework for predicting the non-visual effects of daylight – Part I: photobiology- based model

This paper investigates the formulation of a modelling framework for the non-visual effects of daylight, such as entrainment of the circadian system and maintenance of alertness. The body of empirical data from photobiology studies is now sufficient to start developing preliminary non-visual lightin...

Full description

Saved in:
Bibliographic Details
Published in:Lighting Research & Technology 2012-03, Vol.44 (1), p.37-53
Main Authors: Andersen, M, Mardaljevic, J, Lockley, SW
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the formulation of a modelling framework for the non-visual effects of daylight, such as entrainment of the circadian system and maintenance of alertness. The body of empirical data from photobiology studies is now sufficient to start developing preliminary non-visual lighting evaluation methods for lighting design. Eventually, these non-visual effects have the potential to become a relevant quantity to consider when assessing the overall daylighting performance of a space. This paper describes the assumptions and general approach that were developed to propose a modeling framework for occupant exposure to non-visual effects of light, and presents a novel means of visualising the ‘circadian potential’ of a point in space. The proposed approach uses current outcomes of photobiology research to define – at this point static – threshold values for illumination in terms of spectrum, intensity and timing of light at the human eye. These values are then translated into goals for lighting simulation, based on vertical illuminance at the eye, that – ultimately – could become goals for building design. A new climate-based simulation model has been developed to apply these concepts to a residential environment. This will be described in Part 2 of this paper.
ISSN:1477-1535
1477-0938
DOI:10.1177/1477153511435961