Loading…

Relation between set partitioning and set covering problems with quadratic fractional objective functions

In this paper a technique for converting Quadratic Set Partitioning Problem with fractional objective function into a Quadratic Set Covering Problem with fractional objective function having same optimal solutions has been described. The procedure so developed is illustrated with the help of a numer...

Full description

Saved in:
Bibliographic Details
Published in:Opsearch 2011-09, Vol.48 (3), p.247-256
Main Authors: Shanker, Ravi, Arora, S. R., Saxena, R. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c331t-3cc2368bff6e6fc32b9013cafc8b189921f0bda16a604429197f81c5e6804dbf3
container_end_page 256
container_issue 3
container_start_page 247
container_title Opsearch
container_volume 48
creator Shanker, Ravi
Arora, S. R.
Saxena, R. R.
description In this paper a technique for converting Quadratic Set Partitioning Problem with fractional objective function into a Quadratic Set Covering Problem with fractional objective function having same optimal solutions has been described. The procedure so developed is illustrated with the help of a numerical example.
doi_str_mv 10.1007/s12597-011-0052-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019629588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019629588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3cc2368bff6e6fc32b9013cafc8b189921f0bda16a604429197f81c5e6804dbf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLvgys3ovck8kqUUX1AQRNchk97olOlMm8y0-O_NtIIguLqHwzmHy5cklwg3CFDeBuS5KlNATAFynoqjZAKqzFMQHI6jBgGpkLI8Tc5CWAIUGchsktSv1Ji-7lpWUb8jalmgnq2N7-vRrdsPZtrF3rTdlvxorH1XNbQKbFf3n2wzmIWPE5Y5b-xYMg3rqiVFvSXmhnZvhvPkxJkm0MXPnSbvD_dvs6d0_vL4PLubp1YI7FNhLReFrJwrqHBW8EoBCmuclRVKpTg6qBYGC1NAlnGFqnQSbU6FhGxROTFNrg-78c3NQKHXqzpYahrTUjcEjYCq4CqXMkav_kSX3eDj_0EryHLEXGEM4SFkfReCJ6fXvl4Z_xWX9MheH9jryF6P7LWIHX7ohPVIjPzv8P-lb-BuiIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904511591</pqid></control><display><type>article</type><title>Relation between set partitioning and set covering problems with quadratic fractional objective functions</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Shanker, Ravi ; Arora, S. R. ; Saxena, R. R.</creator><creatorcontrib>Shanker, Ravi ; Arora, S. R. ; Saxena, R. R.</creatorcontrib><description>In this paper a technique for converting Quadratic Set Partitioning Problem with fractional objective function into a Quadratic Set Covering Problem with fractional objective function having same optimal solutions has been described. The procedure so developed is illustrated with the help of a numerical example.</description><identifier>ISSN: 0030-3887</identifier><identifier>EISSN: 0975-0320</identifier><identifier>DOI: 10.1007/s12597-011-0052-3</identifier><language>eng</language><publisher>India: Springer-Verlag</publisher><subject>Business and Management ; Converting ; Covering ; Integer programming ; Management ; Market penetration ; Mathematical analysis ; Mathematical models ; Mathematics ; Operations research ; Operations Research/Decision Theory ; Optimization ; Partitioning ; Quadratic programming ; Studies ; Theoretical Article ; Utility functions ; Variables</subject><ispartof>Opsearch, 2011-09, Vol.48 (3), p.247-256</ispartof><rights>Operational Research Society of India 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-3cc2368bff6e6fc32b9013cafc8b189921f0bda16a604429197f81c5e6804dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/904511591?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Shanker, Ravi</creatorcontrib><creatorcontrib>Arora, S. R.</creatorcontrib><creatorcontrib>Saxena, R. R.</creatorcontrib><title>Relation between set partitioning and set covering problems with quadratic fractional objective functions</title><title>Opsearch</title><addtitle>OPSEARCH</addtitle><description>In this paper a technique for converting Quadratic Set Partitioning Problem with fractional objective function into a Quadratic Set Covering Problem with fractional objective function having same optimal solutions has been described. The procedure so developed is illustrated with the help of a numerical example.</description><subject>Business and Management</subject><subject>Converting</subject><subject>Covering</subject><subject>Integer programming</subject><subject>Management</subject><subject>Market penetration</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Partitioning</subject><subject>Quadratic programming</subject><subject>Studies</subject><subject>Theoretical Article</subject><subject>Utility functions</subject><subject>Variables</subject><issn>0030-3887</issn><issn>0975-0320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLvgys3ovck8kqUUX1AQRNchk97olOlMm8y0-O_NtIIguLqHwzmHy5cklwg3CFDeBuS5KlNATAFynoqjZAKqzFMQHI6jBgGpkLI8Tc5CWAIUGchsktSv1Ji-7lpWUb8jalmgnq2N7-vRrdsPZtrF3rTdlvxorH1XNbQKbFf3n2wzmIWPE5Y5b-xYMg3rqiVFvSXmhnZvhvPkxJkm0MXPnSbvD_dvs6d0_vL4PLubp1YI7FNhLReFrJwrqHBW8EoBCmuclRVKpTg6qBYGC1NAlnGFqnQSbU6FhGxROTFNrg-78c3NQKHXqzpYahrTUjcEjYCq4CqXMkav_kSX3eDj_0EryHLEXGEM4SFkfReCJ6fXvl4Z_xWX9MheH9jryF6P7LWIHX7ohPVIjPzv8P-lb-BuiIg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Shanker, Ravi</creator><creator>Arora, S. R.</creator><creator>Saxena, R. R.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110901</creationdate><title>Relation between set partitioning and set covering problems with quadratic fractional objective functions</title><author>Shanker, Ravi ; Arora, S. R. ; Saxena, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3cc2368bff6e6fc32b9013cafc8b189921f0bda16a604429197f81c5e6804dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Business and Management</topic><topic>Converting</topic><topic>Covering</topic><topic>Integer programming</topic><topic>Management</topic><topic>Market penetration</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Partitioning</topic><topic>Quadratic programming</topic><topic>Studies</topic><topic>Theoretical Article</topic><topic>Utility functions</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanker, Ravi</creatorcontrib><creatorcontrib>Arora, S. R.</creatorcontrib><creatorcontrib>Saxena, R. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Opsearch</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanker, Ravi</au><au>Arora, S. R.</au><au>Saxena, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between set partitioning and set covering problems with quadratic fractional objective functions</atitle><jtitle>Opsearch</jtitle><stitle>OPSEARCH</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>48</volume><issue>3</issue><spage>247</spage><epage>256</epage><pages>247-256</pages><issn>0030-3887</issn><eissn>0975-0320</eissn><abstract>In this paper a technique for converting Quadratic Set Partitioning Problem with fractional objective function into a Quadratic Set Covering Problem with fractional objective function having same optimal solutions has been described. The procedure so developed is illustrated with the help of a numerical example.</abstract><cop>India</cop><pub>Springer-Verlag</pub><doi>10.1007/s12597-011-0052-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3887
ispartof Opsearch, 2011-09, Vol.48 (3), p.247-256
issn 0030-3887
0975-0320
language eng
recordid cdi_proquest_miscellaneous_1019629588
source ABI/INFORM Global; Springer Link
subjects Business and Management
Converting
Covering
Integer programming
Management
Market penetration
Mathematical analysis
Mathematical models
Mathematics
Operations research
Operations Research/Decision Theory
Optimization
Partitioning
Quadratic programming
Studies
Theoretical Article
Utility functions
Variables
title Relation between set partitioning and set covering problems with quadratic fractional objective functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20set%20partitioning%20and%20set%20covering%20problems%20with%20quadratic%20fractional%20objective%20functions&rft.jtitle=Opsearch&rft.au=Shanker,%20Ravi&rft.date=2011-09-01&rft.volume=48&rft.issue=3&rft.spage=247&rft.epage=256&rft.pages=247-256&rft.issn=0030-3887&rft.eissn=0975-0320&rft_id=info:doi/10.1007/s12597-011-0052-3&rft_dat=%3Cproquest_cross%3E1019629588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-3cc2368bff6e6fc32b9013cafc8b189921f0bda16a604429197f81c5e6804dbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=904511591&rft_id=info:pmid/&rfr_iscdi=true