Loading…
A new coupled fluid–structure modeling methodology for running ductile fracture
► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating...
Saved in:
Published in: | Computers & structures 2012-03, Vol.94-95, p.13-21 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3 |
container_end_page | 21 |
container_issue | |
container_start_page | 13 |
container_title | Computers & structures |
container_volume | 94-95 |
creator | Nordhagen, H.O. Kragset, S. Berstad, T. Morin, A. Dørum, C. Munkejord, S.T. |
description | ► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results.
A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained. |
doi_str_mv | 10.1016/j.compstruc.2012.01.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019630298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912000053</els_id><sourcerecordid>1019630298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD6-wd4IbrqtpN_LYfAFggi6DjGpjBnSnTHpVmbnP_iHfomZB7N1VVB1blXdS8gFhYwCra4XmXTdMgx-lBkDyjKgGUBxQCa0qduUsSI_JJPYKdO6LdpjchLCAgCqAmBCnqdJj1-JdOPSokq0HY36_f7ZrBtGj0nnFFrTz5MOh3ennHXzVaKdT_zY9-u-iqCxmGgvNoozcqSFDXi-q6fk9fbmZXafPj7dPcymj6nM62ZI66ZCVWItGcoSIGdCSl0yqrUu40wL0EzH5zWqXCsqZFuK-g011Q20ZYH5Kbna7l169zFiGHhngkRrRY9uDDyG01Y5sLaJaL1FpXcheNR86U0n_CpCa67iC74Pka9D5EB5jCwqL3dHRJDCRo-9NGEvZ2UVIZZHbrrlMDr-NOh5kAZ7icp4lANXzvx76w8Mko-6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019630298</pqid></control><display><type>article</type><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><source>ScienceDirect Journals</source><creator>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</creator><creatorcontrib>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</creatorcontrib><description>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results.
A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.01.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Computer simulation ; Ductile fracture ; Exact sciences and technology ; FEM ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid–structure ; Fracture ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Leak ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanical engineering. Machine design ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Pipe ; Pipeline ; Pipelines ; Running ; Sciences and techniques of general use ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics</subject><ispartof>Computers & structures, 2012-03, Vol.94-95, p.13-21</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</citedby><cites>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604323$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordhagen, H.O.</creatorcontrib><creatorcontrib>Kragset, S.</creatorcontrib><creatorcontrib>Berstad, T.</creatorcontrib><creatorcontrib>Morin, A.</creatorcontrib><creatorcontrib>Dørum, C.</creatorcontrib><creatorcontrib>Munkejord, S.T.</creatorcontrib><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><title>Computers & structures</title><description>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results.
A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Computer simulation</subject><subject>Ductile fracture</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid–structure</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Leak</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical engineering. Machine design</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Pipe</subject><subject>Pipeline</subject><subject>Pipelines</subject><subject>Running</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD6-wd4IbrqtpN_LYfAFggi6DjGpjBnSnTHpVmbnP_iHfomZB7N1VVB1blXdS8gFhYwCra4XmXTdMgx-lBkDyjKgGUBxQCa0qduUsSI_JJPYKdO6LdpjchLCAgCqAmBCnqdJj1-JdOPSokq0HY36_f7ZrBtGj0nnFFrTz5MOh3ennHXzVaKdT_zY9-u-iqCxmGgvNoozcqSFDXi-q6fk9fbmZXafPj7dPcymj6nM62ZI66ZCVWItGcoSIGdCSl0yqrUu40wL0EzH5zWqXCsqZFuK-g011Q20ZYH5Kbna7l169zFiGHhngkRrRY9uDDyG01Y5sLaJaL1FpXcheNR86U0n_CpCa67iC74Pka9D5EB5jCwqL3dHRJDCRo-9NGEvZ2UVIZZHbrrlMDr-NOh5kAZ7icp4lANXzvx76w8Mko-6</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Nordhagen, H.O.</creator><creator>Kragset, S.</creator><creator>Berstad, T.</creator><creator>Morin, A.</creator><creator>Dørum, C.</creator><creator>Munkejord, S.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><author>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Computer simulation</topic><topic>Ductile fracture</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid–structure</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Leak</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical engineering. Machine design</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Pipe</topic><topic>Pipeline</topic><topic>Pipelines</topic><topic>Running</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordhagen, H.O.</creatorcontrib><creatorcontrib>Kragset, S.</creatorcontrib><creatorcontrib>Berstad, T.</creatorcontrib><creatorcontrib>Morin, A.</creatorcontrib><creatorcontrib>Dørum, C.</creatorcontrib><creatorcontrib>Munkejord, S.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordhagen, H.O.</au><au>Kragset, S.</au><au>Berstad, T.</au><au>Morin, A.</au><au>Dørum, C.</au><au>Munkejord, S.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new coupled fluid–structure modeling methodology for running ductile fracture</atitle><jtitle>Computers & structures</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>94-95</volume><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results.
A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.01.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2012-03, Vol.94-95, p.13-21 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019630298 |
source | ScienceDirect Journals |
subjects | Applied sciences CFD Computer simulation Ductile fracture Exact sciences and technology FEM Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fluid–structure Fracture Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Leak Mathematical analysis Mathematical models Mathematics Mechanical engineering. Machine design Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation Physics Pipe Pipeline Pipelines Running Sciences and techniques of general use Solid mechanics Steel design Steel tanks and pressure vessels boiler manufacturing Structural and continuum mechanics |
title | A new coupled fluid–structure modeling methodology for running ductile fracture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20coupled%20fluid%E2%80%93structure%20modeling%20methodology%20for%20running%20ductile%20fracture&rft.jtitle=Computers%20&%20structures&rft.au=Nordhagen,%20H.O.&rft.date=2012-03-01&rft.volume=94-95&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.01.004&rft_dat=%3Cproquest_cross%3E1019630298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019630298&rft_id=info:pmid/&rfr_iscdi=true |