Loading…

A new coupled fluid–structure modeling methodology for running ductile fracture

► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2012-03, Vol.94-95, p.13-21
Main Authors: Nordhagen, H.O., Kragset, S., Berstad, T., Morin, A., Dørum, C., Munkejord, S.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3
cites cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3
container_end_page 21
container_issue
container_start_page 13
container_title Computers & structures
container_volume 94-95
creator Nordhagen, H.O.
Kragset, S.
Berstad, T.
Morin, A.
Dørum, C.
Munkejord, S.T.
description ► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results. A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.
doi_str_mv 10.1016/j.compstruc.2012.01.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019630298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912000053</els_id><sourcerecordid>1019630298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD6-wd4IbrqtpN_LYfAFggi6DjGpjBnSnTHpVmbnP_iHfomZB7N1VVB1blXdS8gFhYwCra4XmXTdMgx-lBkDyjKgGUBxQCa0qduUsSI_JJPYKdO6LdpjchLCAgCqAmBCnqdJj1-JdOPSokq0HY36_f7ZrBtGj0nnFFrTz5MOh3ennHXzVaKdT_zY9-u-iqCxmGgvNoozcqSFDXi-q6fk9fbmZXafPj7dPcymj6nM62ZI66ZCVWItGcoSIGdCSl0yqrUu40wL0EzH5zWqXCsqZFuK-g011Q20ZYH5Kbna7l169zFiGHhngkRrRY9uDDyG01Y5sLaJaL1FpXcheNR86U0n_CpCa67iC74Pka9D5EB5jCwqL3dHRJDCRo-9NGEvZ2UVIZZHbrrlMDr-NOh5kAZ7icp4lANXzvx76w8Mko-6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019630298</pqid></control><display><type>article</type><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><source>ScienceDirect Journals</source><creator>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</creator><creatorcontrib>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</creatorcontrib><description>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results. A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.01.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Computer simulation ; Ductile fracture ; Exact sciences and technology ; FEM ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid–structure ; Fracture ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Leak ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanical engineering. Machine design ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Pipe ; Pipeline ; Pipelines ; Running ; Sciences and techniques of general use ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics</subject><ispartof>Computers &amp; structures, 2012-03, Vol.94-95, p.13-21</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</citedby><cites>FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25604323$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordhagen, H.O.</creatorcontrib><creatorcontrib>Kragset, S.</creatorcontrib><creatorcontrib>Berstad, T.</creatorcontrib><creatorcontrib>Morin, A.</creatorcontrib><creatorcontrib>Dørum, C.</creatorcontrib><creatorcontrib>Munkejord, S.T.</creatorcontrib><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><title>Computers &amp; structures</title><description>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results. A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Computer simulation</subject><subject>Ductile fracture</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid–structure</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Leak</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical engineering. Machine design</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Pipe</subject><subject>Pipeline</subject><subject>Pipelines</subject><subject>Running</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD6-wd4IbrqtpN_LYfAFggi6DjGpjBnSnTHpVmbnP_iHfomZB7N1VVB1blXdS8gFhYwCra4XmXTdMgx-lBkDyjKgGUBxQCa0qduUsSI_JJPYKdO6LdpjchLCAgCqAmBCnqdJj1-JdOPSokq0HY36_f7ZrBtGj0nnFFrTz5MOh3ennHXzVaKdT_zY9-u-iqCxmGgvNoozcqSFDXi-q6fk9fbmZXafPj7dPcymj6nM62ZI66ZCVWItGcoSIGdCSl0yqrUu40wL0EzH5zWqXCsqZFuK-g011Q20ZYH5Kbna7l169zFiGHhngkRrRY9uDDyG01Y5sLaJaL1FpXcheNR86U0n_CpCa67iC74Pka9D5EB5jCwqL3dHRJDCRo-9NGEvZ2UVIZZHbrrlMDr-NOh5kAZ7icp4lANXzvx76w8Mko-6</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Nordhagen, H.O.</creator><creator>Kragset, S.</creator><creator>Berstad, T.</creator><creator>Morin, A.</creator><creator>Dørum, C.</creator><creator>Munkejord, S.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>A new coupled fluid–structure modeling methodology for running ductile fracture</title><author>Nordhagen, H.O. ; Kragset, S. ; Berstad, T. ; Morin, A. ; Dørum, C. ; Munkejord, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Computer simulation</topic><topic>Ductile fracture</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid–structure</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Leak</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical engineering. Machine design</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Pipe</topic><topic>Pipeline</topic><topic>Pipelines</topic><topic>Running</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordhagen, H.O.</creatorcontrib><creatorcontrib>Kragset, S.</creatorcontrib><creatorcontrib>Berstad, T.</creatorcontrib><creatorcontrib>Morin, A.</creatorcontrib><creatorcontrib>Dørum, C.</creatorcontrib><creatorcontrib>Munkejord, S.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordhagen, H.O.</au><au>Kragset, S.</au><au>Berstad, T.</au><au>Morin, A.</au><au>Dørum, C.</au><au>Munkejord, S.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new coupled fluid–structure modeling methodology for running ductile fracture</atitle><jtitle>Computers &amp; structures</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>94-95</volume><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► Development of coupled fluid–structure modeling methodology for running ductile fracture. ► Fracture propagation has been modeled using the finite-element method. ► The finite-volume method has been employed to simulate the fluid flow inside the pipe. ► Choked-flow theory was used for calculating the flow through the pipe crack. ► A comparison to full-scale tests has been done, giving very promising results. A coupled fluid–structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The finite-volume method has been employed to simulate the fluid flow inside the pipe, and the resulting pressure profile was applied as a load in the finite-element model. Choked-flow theory was used for calculating the flow through the pipe crack. A comparison to full-scale tests of running ductile fracture in steel pipelines pressurized with hydrogen and with methane has been done, and very promising results have been obtained.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.01.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2012-03, Vol.94-95, p.13-21
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_1019630298
source ScienceDirect Journals
subjects Applied sciences
CFD
Computer simulation
Ductile fracture
Exact sciences and technology
FEM
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fluid–structure
Fracture
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Leak
Mathematical analysis
Mathematical models
Mathematics
Mechanical engineering. Machine design
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
Pipe
Pipeline
Pipelines
Running
Sciences and techniques of general use
Solid mechanics
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
title A new coupled fluid–structure modeling methodology for running ductile fracture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20coupled%20fluid%E2%80%93structure%20modeling%20methodology%20for%20running%20ductile%20fracture&rft.jtitle=Computers%20&%20structures&rft.au=Nordhagen,%20H.O.&rft.date=2012-03-01&rft.volume=94-95&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.01.004&rft_dat=%3Cproquest_cross%3E1019630298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-786ed5e7c2ec50032accf521fff5786fa0f2f224fed3fd1ac95a7bef1f80954e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019630298&rft_id=info:pmid/&rfr_iscdi=true