Loading…

Synthesis and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties

The homopolymer of 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane and the copolymer with EDOT of 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane were synthesized via electrochemical reaction on indium tin oxide (ITO)-coated glass plate. The obtained polymeric compounds were i...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2012-03, Vol.65, p.104-114
Main Authors: AYDIN, Aysel, KAYA, Ismet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The homopolymer of 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane and the copolymer with EDOT of 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane were synthesized via electrochemical reaction on indium tin oxide (ITO)-coated glass plate. The obtained polymeric compounds were investigated as fluorescence properties in solution form. The synthesized polymers showed good fluorescence property indicating tunable light emission with green and yellow colors. This shows that these polymers could be used in production of new polymeric light emitting diodes (PLED)s for green and yellow color emissions. The compounds 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane (B1) and 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane (B2) were synthesized via Ullmann and Suzuki couplings. Additionally, the homopolymers and copolymers of these compounds with 3,4-ethylenedioxythiophene (EDOT) and thiophene (Th) were synthesized and coated onto an ITO-glass surface via electrochemical oxidative polymerization. The spectroelectrochemical and electrochromic properties of these compounds were also investigated. The switching ability of these polymers was measured as the percent transmittance (%T) at their point of maximum contrast. The solid state electrical conductivities of the polymeric films coated onto the ITO-glass surface were measured via the four point probe technique using an electrometer. The compounds were characterized by FT-IR and NMR, and their thermal stabilities were determined via TG measurements. Fluorescence measurements were performed using DMSO solutions, and the synthesized polymers emitted both green and yellow colors based on the tuning of the excitation wavelength, which indicates that these polymers could be used to produce new polymeric light emitting diodes (PLEDs) with green and yellow emissions.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2012.01.028