Loading…

Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point

We study two widely used algorithms for the Potts model on rectangular subsets of the hypercubic lattice —heat bath dynamics and the Swendsen–Wang algorithm—and prove that, under certain circumstances, the mixing in these algorithms is torpid or slow. In particular, we show that for heat bath dynami...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2012-04, Vol.152 (3-4), p.509-557
Main Authors: Borgs, Christian, Chayes, Jennifer T., Tetali, Prasad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13
cites cdi_FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13
container_end_page 557
container_issue 3-4
container_start_page 509
container_title Probability theory and related fields
container_volume 152
creator Borgs, Christian
Chayes, Jennifer T.
Tetali, Prasad
description We study two widely used algorithms for the Potts model on rectangular subsets of the hypercubic lattice —heat bath dynamics and the Swendsen–Wang algorithm—and prove that, under certain circumstances, the mixing in these algorithms is torpid or slow. In particular, we show that for heat bath dynamics throughout the region of phase coexistence, and for the Swendsen–Wang algorithm at the transition point, the mixing time in a box of side length L with periodic boundary conditions has upper and lower bounds which are exponential in L d -1 . This work provides the first upper bound of this form for the Swendsen–Wang algorithm, and gives lower bounds for both algorithms which significantly improve the previous lower bounds that were exponential in L /(log L ) 2 .
doi_str_mv 10.1007/s00440-010-0329-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019647231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661267661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13</originalsourceid><addsrcrecordid>eNp1kc1KAzEQx4MoWKsP4C3oxcvq5Gu3OUrxCwoKVj0u2TTbprRJTbKoN9_BN_RJTK0gCB5mBmZ-85-BP0KHBE4JQHUWATiHAkgORmUBW6hHOKMFhZJvox6QalAMQJBdtBfjHAAo47SHHsd2Oku48Z2bRNz6gJf21bop9i1OM4PvX0weGPf5_vGkclstpj7YNFtilb6BO59SxCkoF22y3uGVty7to51WLaI5-Kl99HB5MR5eF6Pbq5vh-ajQnMhUSFGCaTVvNBfcSEI1E1UrqBRKTkgp1UQDNJUohRaUE9pwrRUzDWdMNLohrI9ONrqr4J87E1O9tFGbxUI547tYEyCy5BVla_ToDzr3XXD5u1rSqiIDymmGjv-DaFkSWlY5Z4psKB18jMG09SrYpQpv-V69tqPe2FFnO-q1HTn1Ed3sxMy6qQm_yv8vfQGgvIxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661267661</pqid></control><display><type>article</type><title>Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point</title><source>ABI/INFORM Collection</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Springer Link</source><creator>Borgs, Christian ; Chayes, Jennifer T. ; Tetali, Prasad</creator><creatorcontrib>Borgs, Christian ; Chayes, Jennifer T. ; Tetali, Prasad</creatorcontrib><description>We study two widely used algorithms for the Potts model on rectangular subsets of the hypercubic lattice —heat bath dynamics and the Swendsen–Wang algorithm—and prove that, under certain circumstances, the mixing in these algorithms is torpid or slow. In particular, we show that for heat bath dynamics throughout the region of phase coexistence, and for the Swendsen–Wang algorithm at the transition point, the mixing time in a box of side length L with periodic boundary conditions has upper and lower bounds which are exponential in L d -1 . This work provides the first upper bound of this form for the Swendsen–Wang algorithm, and gives lower bounds for both algorithms which significantly improve the previous lower bounds that were exponential in L /(log L ) 2 .</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-010-0329-0</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Boundary conditions ; Computer science ; Dynamic tests ; Dynamics ; Economics ; Equilibrium ; Finance ; Heat ; Insurance ; Lattices ; Lower bounds ; Management ; Markov analysis ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Phase transitions ; Probability ; Probability theory ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistical physics ; Statistics for Business ; Studies ; Temperature ; Theoretical ; Topological manifolds ; Transition points ; Upper bounds</subject><ispartof>Probability theory and related fields, 2012-04, Vol.152 (3-4), p.509-557</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2010.</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13</citedby><cites>FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2661267661/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2661267661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Borgs, Christian</creatorcontrib><creatorcontrib>Chayes, Jennifer T.</creatorcontrib><creatorcontrib>Tetali, Prasad</creatorcontrib><title>Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We study two widely used algorithms for the Potts model on rectangular subsets of the hypercubic lattice —heat bath dynamics and the Swendsen–Wang algorithm—and prove that, under certain circumstances, the mixing in these algorithms is torpid or slow. In particular, we show that for heat bath dynamics throughout the region of phase coexistence, and for the Swendsen–Wang algorithm at the transition point, the mixing time in a box of side length L with periodic boundary conditions has upper and lower bounds which are exponential in L d -1 . This work provides the first upper bound of this form for the Swendsen–Wang algorithm, and gives lower bounds for both algorithms which significantly improve the previous lower bounds that were exponential in L /(log L ) 2 .</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Computer science</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Finance</subject><subject>Heat</subject><subject>Insurance</subject><subject>Lattices</subject><subject>Lower bounds</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Phase transitions</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistical physics</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Topological manifolds</subject><subject>Transition points</subject><subject>Upper bounds</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1KAzEQx4MoWKsP4C3oxcvq5Gu3OUrxCwoKVj0u2TTbprRJTbKoN9_BN_RJTK0gCB5mBmZ-85-BP0KHBE4JQHUWATiHAkgORmUBW6hHOKMFhZJvox6QalAMQJBdtBfjHAAo47SHHsd2Oku48Z2bRNz6gJf21bop9i1OM4PvX0weGPf5_vGkclstpj7YNFtilb6BO59SxCkoF22y3uGVty7to51WLaI5-Kl99HB5MR5eF6Pbq5vh-ajQnMhUSFGCaTVvNBfcSEI1E1UrqBRKTkgp1UQDNJUohRaUE9pwrRUzDWdMNLohrI9ONrqr4J87E1O9tFGbxUI547tYEyCy5BVla_ToDzr3XXD5u1rSqiIDymmGjv-DaFkSWlY5Z4psKB18jMG09SrYpQpv-V69tqPe2FFnO-q1HTn1Ed3sxMy6qQm_yv8vfQGgvIxb</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Borgs, Christian</creator><creator>Chayes, Jennifer T.</creator><creator>Tetali, Prasad</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>0U~</scope><scope>1-H</scope><scope>L.0</scope></search><sort><creationdate>20120401</creationdate><title>Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point</title><author>Borgs, Christian ; Chayes, Jennifer T. ; Tetali, Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Computer science</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Finance</topic><topic>Heat</topic><topic>Insurance</topic><topic>Lattices</topic><topic>Lower bounds</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Phase transitions</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistical physics</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Topological manifolds</topic><topic>Transition points</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgs, Christian</creatorcontrib><creatorcontrib>Chayes, Jennifer T.</creatorcontrib><creatorcontrib>Tetali, Prasad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Professional Standard</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgs, Christian</au><au>Chayes, Jennifer T.</au><au>Tetali, Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>152</volume><issue>3-4</issue><spage>509</spage><epage>557</epage><pages>509-557</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We study two widely used algorithms for the Potts model on rectangular subsets of the hypercubic lattice —heat bath dynamics and the Swendsen–Wang algorithm—and prove that, under certain circumstances, the mixing in these algorithms is torpid or slow. In particular, we show that for heat bath dynamics throughout the region of phase coexistence, and for the Swendsen–Wang algorithm at the transition point, the mixing time in a box of side length L with periodic boundary conditions has upper and lower bounds which are exponential in L d -1 . This work provides the first upper bound of this form for the Swendsen–Wang algorithm, and gives lower bounds for both algorithms which significantly improve the previous lower bounds that were exponential in L /(log L ) 2 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-010-0329-0</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2012-04, Vol.152 (3-4), p.509-557
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1019647231
source ABI/INFORM Collection; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Springer Link
subjects Algorithms
Boundary conditions
Computer science
Dynamic tests
Dynamics
Economics
Equilibrium
Finance
Heat
Insurance
Lattices
Lower bounds
Management
Markov analysis
Mathematical analysis
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Phase transitions
Probability
Probability theory
Probability Theory and Stochastic Processes
Quantitative Finance
Statistical physics
Statistics for Business
Studies
Temperature
Theoretical
Topological manifolds
Transition points
Upper bounds
title Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20bounds%20for%20mixing%20of%20the%20Swendsen%E2%80%93Wang%20algorithm%20at%20the%20Potts%20transition%20point&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Borgs,%20Christian&rft.date=2012-04-01&rft.volume=152&rft.issue=3-4&rft.spage=509&rft.epage=557&rft.pages=509-557&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-010-0329-0&rft_dat=%3Cproquest_cross%3E2661267661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-9560efc4bc454e912c357f5295a9d169adc00b7565c52412b4cca3eb4335bcb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661267661&rft_id=info:pmid/&rfr_iscdi=true