Loading…

The constitutive response of three solder materials

► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2012-05, Vol.524, p.32-37
Main Authors: Perez-Bergquist, Alejandro G., Cao, Fang, Perez-Bergquist, Sara J., Lopez, Mike F., Trujillo, Carl P., Cerreta, Ellen K., Gray, George T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993
cites cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993
container_end_page 37
container_issue
container_start_page 32
container_title Journal of alloys and compounds
container_volume 524
creator Perez-Bergquist, Alejandro G.
Cao, Fang
Perez-Bergquist, Sara J.
Lopez, Mike F.
Trujillo, Carl P.
Cerreta, Ellen K.
Gray, George T.
description ► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to >103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.
doi_str_mv 10.1016/j.jallcom.2012.02.049
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019647422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838812003118</els_id><sourcerecordid>1019647422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QdgXwZddc9_kSUS8QcGXvoeYndAse6lJWvDfm9Liq3BgGPhmzsxB6JbghmAiH_qmt8Pg5rGhmNAGF3F9hhZEtazmUupztMCailoxpS7RVUo9xphoRhaIrTdQuXlKOeRdDnuoIqRt6aGafZU3EaBK89BBrEabIQY7pGt04UuBm1NdovXry_r5vV59vn08P61qx1qaa-81EdL7L6-UJbJ12lmurHWdkrhTzDJNpeCeF0oAFQ4T0mrMBdcUa82W6P64dhvn7x2kbMaQHAyDnWDeJVN-15K3nNKCiiPq4pxSBG-2MYw2_hTowEnTm1NG5pCRwUX8YHF3srDJ2cFHO7mQ_oapKPcwLgr3eOSgvLsPEE1yASYHXYjgsunm8I_TL_p1fjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019647422</pqid></control><display><type>article</type><title>The constitutive response of three solder materials</title><source>ScienceDirect Journals</source><creator>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</creator><creatorcontrib>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</creatorcontrib><description>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to &gt;103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to &gt;103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2012.02.049</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloys ; Applied sciences ; Brazing. Soldering ; Coarsening ; Devices ; Elasticity. Plasticity ; Electronics ; Exact sciences and technology ; Failure ; Joining, thermal cutting: metallurgical aspects ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Plastic deformation ; Solder ; Solders ; Strain rate ; Strain rate sensitivity ; Temperature dependence</subject><ispartof>Journal of alloys and compounds, 2012-05, Vol.524, p.32-37</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</citedby><cites>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25790345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez-Bergquist, Alejandro G.</creatorcontrib><creatorcontrib>Cao, Fang</creatorcontrib><creatorcontrib>Perez-Bergquist, Sara J.</creatorcontrib><creatorcontrib>Lopez, Mike F.</creatorcontrib><creatorcontrib>Trujillo, Carl P.</creatorcontrib><creatorcontrib>Cerreta, Ellen K.</creatorcontrib><creatorcontrib>Gray, George T.</creatorcontrib><title>The constitutive response of three solder materials</title><title>Journal of alloys and compounds</title><description>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to &gt;103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to &gt;103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>Coarsening</subject><subject>Devices</subject><subject>Elasticity. Plasticity</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Plastic deformation</subject><subject>Solder</subject><subject>Solders</subject><subject>Strain rate</subject><subject>Strain rate sensitivity</subject><subject>Temperature dependence</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QdgXwZddc9_kSUS8QcGXvoeYndAse6lJWvDfm9Liq3BgGPhmzsxB6JbghmAiH_qmt8Pg5rGhmNAGF3F9hhZEtazmUupztMCailoxpS7RVUo9xphoRhaIrTdQuXlKOeRdDnuoIqRt6aGafZU3EaBK89BBrEabIQY7pGt04UuBm1NdovXry_r5vV59vn08P61qx1qaa-81EdL7L6-UJbJ12lmurHWdkrhTzDJNpeCeF0oAFQ4T0mrMBdcUa82W6P64dhvn7x2kbMaQHAyDnWDeJVN-15K3nNKCiiPq4pxSBG-2MYw2_hTowEnTm1NG5pCRwUX8YHF3srDJ2cFHO7mQ_oapKPcwLgr3eOSgvLsPEE1yASYHXYjgsunm8I_TL_p1fjc</recordid><startdate>20120525</startdate><enddate>20120525</enddate><creator>Perez-Bergquist, Alejandro G.</creator><creator>Cao, Fang</creator><creator>Perez-Bergquist, Sara J.</creator><creator>Lopez, Mike F.</creator><creator>Trujillo, Carl P.</creator><creator>Cerreta, Ellen K.</creator><creator>Gray, George T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120525</creationdate><title>The constitutive response of three solder materials</title><author>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>Coarsening</topic><topic>Devices</topic><topic>Elasticity. Plasticity</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Plastic deformation</topic><topic>Solder</topic><topic>Solders</topic><topic>Strain rate</topic><topic>Strain rate sensitivity</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Bergquist, Alejandro G.</creatorcontrib><creatorcontrib>Cao, Fang</creatorcontrib><creatorcontrib>Perez-Bergquist, Sara J.</creatorcontrib><creatorcontrib>Lopez, Mike F.</creatorcontrib><creatorcontrib>Trujillo, Carl P.</creatorcontrib><creatorcontrib>Cerreta, Ellen K.</creatorcontrib><creatorcontrib>Gray, George T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez-Bergquist, Alejandro G.</au><au>Cao, Fang</au><au>Perez-Bergquist, Sara J.</au><au>Lopez, Mike F.</au><au>Trujillo, Carl P.</au><au>Cerreta, Ellen K.</au><au>Gray, George T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The constitutive response of three solder materials</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-05-25</date><risdate>2012</risdate><volume>524</volume><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to &gt;103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to &gt;103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2012.02.049</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2012-05, Vol.524, p.32-37
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1019647422
source ScienceDirect Journals
subjects Alloys
Applied sciences
Brazing. Soldering
Coarsening
Devices
Elasticity. Plasticity
Electronics
Exact sciences and technology
Failure
Joining, thermal cutting: metallurgical aspects
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Plastic deformation
Solder
Solders
Strain rate
Strain rate sensitivity
Temperature dependence
title The constitutive response of three solder materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20constitutive%20response%20of%20three%20solder%20materials&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Perez-Bergquist,%20Alejandro%20G.&rft.date=2012-05-25&rft.volume=524&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2012.02.049&rft_dat=%3Cproquest_cross%3E1019647422%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019647422&rft_id=info:pmid/&rfr_iscdi=true