Loading…
The constitutive response of three solder materials
► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view. As increasing worldwide demand for portable consumer electronics drives de...
Saved in:
Published in: | Journal of alloys and compounds 2012-05, Vol.524, p.32-37 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993 |
container_end_page | 37 |
container_issue | |
container_start_page | 32 |
container_title | Journal of alloys and compounds |
container_volume | 524 |
creator | Perez-Bergquist, Alejandro G. Cao, Fang Perez-Bergquist, Sara J. Lopez, Mike F. Trujillo, Carl P. Cerreta, Ellen K. Gray, George T. |
description | ► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view.
As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to >103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature. |
doi_str_mv | 10.1016/j.jallcom.2012.02.049 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019647422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838812003118</els_id><sourcerecordid>1019647422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QdgXwZddc9_kSUS8QcGXvoeYndAse6lJWvDfm9Liq3BgGPhmzsxB6JbghmAiH_qmt8Pg5rGhmNAGF3F9hhZEtazmUupztMCailoxpS7RVUo9xphoRhaIrTdQuXlKOeRdDnuoIqRt6aGafZU3EaBK89BBrEabIQY7pGt04UuBm1NdovXry_r5vV59vn08P61qx1qaa-81EdL7L6-UJbJ12lmurHWdkrhTzDJNpeCeF0oAFQ4T0mrMBdcUa82W6P64dhvn7x2kbMaQHAyDnWDeJVN-15K3nNKCiiPq4pxSBG-2MYw2_hTowEnTm1NG5pCRwUX8YHF3srDJ2cFHO7mQ_oapKPcwLgr3eOSgvLsPEE1yASYHXYjgsunm8I_TL_p1fjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019647422</pqid></control><display><type>article</type><title>The constitutive response of three solder materials</title><source>ScienceDirect Journals</source><creator>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</creator><creatorcontrib>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</creatorcontrib><description>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view.
As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to >103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2012.02.049</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloys ; Applied sciences ; Brazing. Soldering ; Coarsening ; Devices ; Elasticity. Plasticity ; Electronics ; Exact sciences and technology ; Failure ; Joining, thermal cutting: metallurgical aspects ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Plastic deformation ; Solder ; Solders ; Strain rate ; Strain rate sensitivity ; Temperature dependence</subject><ispartof>Journal of alloys and compounds, 2012-05, Vol.524, p.32-37</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</citedby><cites>FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25790345$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez-Bergquist, Alejandro G.</creatorcontrib><creatorcontrib>Cao, Fang</creatorcontrib><creatorcontrib>Perez-Bergquist, Sara J.</creatorcontrib><creatorcontrib>Lopez, Mike F.</creatorcontrib><creatorcontrib>Trujillo, Carl P.</creatorcontrib><creatorcontrib>Cerreta, Ellen K.</creatorcontrib><creatorcontrib>Gray, George T.</creatorcontrib><title>The constitutive response of three solder materials</title><title>Journal of alloys and compounds</title><description>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view.
As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to >103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>Coarsening</subject><subject>Devices</subject><subject>Elasticity. Plasticity</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Plastic deformation</subject><subject>Solder</subject><subject>Solders</subject><subject>Strain rate</subject><subject>Strain rate sensitivity</subject><subject>Temperature dependence</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QdgXwZddc9_kSUS8QcGXvoeYndAse6lJWvDfm9Liq3BgGPhmzsxB6JbghmAiH_qmt8Pg5rGhmNAGF3F9hhZEtazmUupztMCailoxpS7RVUo9xphoRhaIrTdQuXlKOeRdDnuoIqRt6aGafZU3EaBK89BBrEabIQY7pGt04UuBm1NdovXry_r5vV59vn08P61qx1qaa-81EdL7L6-UJbJ12lmurHWdkrhTzDJNpeCeF0oAFQ4T0mrMBdcUa82W6P64dhvn7x2kbMaQHAyDnWDeJVN-15K3nNKCiiPq4pxSBG-2MYw2_hTowEnTm1NG5pCRwUX8YHF3srDJ2cFHO7mQ_oapKPcwLgr3eOSgvLsPEE1yASYHXYjgsunm8I_TL_p1fjc</recordid><startdate>20120525</startdate><enddate>20120525</enddate><creator>Perez-Bergquist, Alejandro G.</creator><creator>Cao, Fang</creator><creator>Perez-Bergquist, Sara J.</creator><creator>Lopez, Mike F.</creator><creator>Trujillo, Carl P.</creator><creator>Cerreta, Ellen K.</creator><creator>Gray, George T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120525</creationdate><title>The constitutive response of three solder materials</title><author>Perez-Bergquist, Alejandro G. ; Cao, Fang ; Perez-Bergquist, Sara J. ; Lopez, Mike F. ; Trujillo, Carl P. ; Cerreta, Ellen K. ; Gray, George T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>Coarsening</topic><topic>Devices</topic><topic>Elasticity. Plasticity</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Plastic deformation</topic><topic>Solder</topic><topic>Solders</topic><topic>Strain rate</topic><topic>Strain rate sensitivity</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Bergquist, Alejandro G.</creatorcontrib><creatorcontrib>Cao, Fang</creatorcontrib><creatorcontrib>Perez-Bergquist, Sara J.</creatorcontrib><creatorcontrib>Lopez, Mike F.</creatorcontrib><creatorcontrib>Trujillo, Carl P.</creatorcontrib><creatorcontrib>Cerreta, Ellen K.</creatorcontrib><creatorcontrib>Gray, George T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez-Bergquist, Alejandro G.</au><au>Cao, Fang</au><au>Perez-Bergquist, Sara J.</au><au>Lopez, Mike F.</au><au>Trujillo, Carl P.</au><au>Cerreta, Ellen K.</au><au>Gray, George T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The constitutive response of three solder materials</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-05-25</date><risdate>2012</risdate><volume>524</volume><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► The full constitutive response of three solder materials. ► Test temperatures from −196°C to 60°C and strain rates from 10−3 to >103s−1. ► Substitutes for leaded solders from a mechanical/microstructural properties view.
As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196°C to 60°C) and strain rate (10−3 to >103s−1). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2012.02.049</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2012-05, Vol.524, p.32-37 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019647422 |
source | ScienceDirect Journals |
subjects | Alloys Applied sciences Brazing. Soldering Coarsening Devices Elasticity. Plasticity Electronics Exact sciences and technology Failure Joining, thermal cutting: metallurgical aspects Mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microstructure Plastic deformation Solder Solders Strain rate Strain rate sensitivity Temperature dependence |
title | The constitutive response of three solder materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20constitutive%20response%20of%20three%20solder%20materials&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Perez-Bergquist,%20Alejandro%20G.&rft.date=2012-05-25&rft.volume=524&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2012.02.049&rft_dat=%3Cproquest_cross%3E1019647422%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-ff9156ffbf88a167c9ca48aacd860d83a392654f41565e25c011790454920993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019647422&rft_id=info:pmid/&rfr_iscdi=true |