Loading…

Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA

A k -winner-take-all ( k rm WTA ) network is able to find out the k largest numbers from n inputs. Recently, a dual neural network (DNN) approach was proposed to implement the k rm WTA process. Compared to the conventional approach, the DNN approach has much less number of interconnections. A rough...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2012-04, Vol.23 (4), p.676-682
Main Authors: Xiao, Yi, Liu, Yuxin, Leung, Chi-Sing, Sum, John Pui-Fai, Ho, Kevin
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 682
container_issue 4
container_start_page 676
container_title IEEE transaction on neural networks and learning systems
container_volume 23
creator Xiao, Yi
Liu, Yuxin
Leung, Chi-Sing
Sum, John Pui-Fai
Ho, Kevin
description A k -winner-take-all ( k rm WTA ) network is able to find out the k largest numbers from n inputs. Recently, a dual neural network (DNN) approach was proposed to implement the k rm WTA process. Compared to the conventional approach, the DNN approach has much less number of interconnections. A rough upper bound on the convergence time of the DNN- k rm WTA model, which is expressed in terms of input variables, was given. This brief derives the exact convergence time of the DNN- k rm WTA model. With our result, we can study the convergence time without spending excessive time to simulate the network dynamics. We also theoretically study the statistical properties of the convergence time when the inputs are uniformly distributed. Since a nonuniform distribution can be converted into a uniform one and the conversion preserves the ordering of the inputs, our theoretical result is also valid for nonuniformly distributed inputs.
doi_str_mv 10.1109/TNNLS.2012.2186315
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019654058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019654058</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_10196540583</originalsourceid><addsrcrecordid>eNqVirFuwjAUAC3USqDCDzC9kSWpn0NMMlIKYkBZGolukQWPNuDY1C8p6t8XoYq9t9wNJ8QYZYwo8-eyKDZvsZKoYoWZTjDtiYFCrSKVZNnDvWfvfTFiPsorWqZ6mg_Eau6M_eGawTtoPwkW3n1T-CC3IyjrhsAf4LUzFgrqwk3txYdT9GKY9nCC0MC2nA_F48FYptGfn8RktSwX6-gc_FdH3FZNzTuy1jjyHVcoMdfpVKZZ8o_1F1qPRZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019654058</pqid></control><display><type>article</type><title>Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA</title><source>IEEE Xplore (Online service)</source><creator>Xiao, Yi ; Liu, Yuxin ; Leung, Chi-Sing ; Sum, John Pui-Fai ; Ho, Kevin</creator><creatorcontrib>Xiao, Yi ; Liu, Yuxin ; Leung, Chi-Sing ; Sum, John Pui-Fai ; Ho, Kevin</creatorcontrib><description>A k -winner-take-all ( k rm WTA ) network is able to find out the k largest numbers from n inputs. Recently, a dual neural network (DNN) approach was proposed to implement the k rm WTA process. Compared to the conventional approach, the DNN approach has much less number of interconnections. A rough upper bound on the convergence time of the DNN- k rm WTA model, which is expressed in terms of input variables, was given. This brief derives the exact convergence time of the DNN- k rm WTA model. With our result, we can study the convergence time without spending excessive time to simulate the network dynamics. We also theoretically study the statistical properties of the convergence time when the inputs are uniformly distributed. Since a nonuniform distribution can be converted into a uniform one and the conversion preserves the ordering of the inputs, our theoretical result is also valid for nonuniformly distributed inputs.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2186315</identifier><language>eng</language><ispartof>IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.676-682</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Leung, Chi-Sing</creatorcontrib><creatorcontrib>Sum, John Pui-Fai</creatorcontrib><creatorcontrib>Ho, Kevin</creatorcontrib><title>Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA</title><title>IEEE transaction on neural networks and learning systems</title><description>A k -winner-take-all ( k rm WTA ) network is able to find out the k largest numbers from n inputs. Recently, a dual neural network (DNN) approach was proposed to implement the k rm WTA process. Compared to the conventional approach, the DNN approach has much less number of interconnections. A rough upper bound on the convergence time of the DNN- k rm WTA model, which is expressed in terms of input variables, was given. This brief derives the exact convergence time of the DNN- k rm WTA model. With our result, we can study the convergence time without spending excessive time to simulate the network dynamics. We also theoretically study the statistical properties of the convergence time when the inputs are uniformly distributed. Since a nonuniform distribution can be converted into a uniform one and the conversion preserves the ordering of the inputs, our theoretical result is also valid for nonuniformly distributed inputs.</description><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVirFuwjAUAC3USqDCDzC9kSWpn0NMMlIKYkBZGolukQWPNuDY1C8p6t8XoYq9t9wNJ8QYZYwo8-eyKDZvsZKoYoWZTjDtiYFCrSKVZNnDvWfvfTFiPsorWqZ6mg_Eau6M_eGawTtoPwkW3n1T-CC3IyjrhsAf4LUzFgrqwk3txYdT9GKY9nCC0MC2nA_F48FYptGfn8RktSwX6-gc_FdH3FZNzTuy1jjyHVcoMdfpVKZZ8o_1F1qPRZo</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Xiao, Yi</creator><creator>Liu, Yuxin</creator><creator>Leung, Chi-Sing</creator><creator>Sum, John Pui-Fai</creator><creator>Ho, Kevin</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120401</creationdate><title>Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA</title><author>Xiao, Yi ; Liu, Yuxin ; Leung, Chi-Sing ; Sum, John Pui-Fai ; Ho, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_10196540583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Leung, Chi-Sing</creatorcontrib><creatorcontrib>Sum, John Pui-Fai</creatorcontrib><creatorcontrib>Ho, Kevin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yi</au><au>Liu, Yuxin</au><au>Leung, Chi-Sing</au><au>Sum, John Pui-Fai</au><au>Ho, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>23</volume><issue>4</issue><spage>676</spage><epage>682</epage><pages>676-682</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><abstract>A k -winner-take-all ( k rm WTA ) network is able to find out the k largest numbers from n inputs. Recently, a dual neural network (DNN) approach was proposed to implement the k rm WTA process. Compared to the conventional approach, the DNN approach has much less number of interconnections. A rough upper bound on the convergence time of the DNN- k rm WTA model, which is expressed in terms of input variables, was given. This brief derives the exact convergence time of the DNN- k rm WTA model. With our result, we can study the convergence time without spending excessive time to simulate the network dynamics. We also theoretically study the statistical properties of the convergence time when the inputs are uniformly distributed. Since a nonuniform distribution can be converted into a uniform one and the conversion preserves the ordering of the inputs, our theoretical result is also valid for nonuniformly distributed inputs.</abstract><doi>10.1109/TNNLS.2012.2186315</doi></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.676-682
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_1019654058
source IEEE Xplore (Online service)
title Analysis on the Convergence Time of Dual Neural Network-Based k rm WTA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20the%20Convergence%20Time%20of%20Dual%20Neural%20Network-Based%20k%20rm%20WTA&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xiao,%20Yi&rft.date=2012-04-01&rft.volume=23&rft.issue=4&rft.spage=676&rft.epage=682&rft.pages=676-682&rft.issn=2162-237X&rft.eissn=2162-2388&rft_id=info:doi/10.1109/TNNLS.2012.2186315&rft_dat=%3Cproquest%3E1019654058%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_10196540583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019654058&rft_id=info:pmid/&rfr_iscdi=true