Loading…
Robust multi-market newsvendor models with interval demand data
We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be...
Saved in:
Published in: | European journal of operational research 2011-07, Vol.212 (2), p.361-373 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3 |
container_end_page | 373 |
container_issue | 2 |
container_start_page | 361 |
container_title | European journal of operational research |
container_volume | 212 |
creator | Lin, Jun Ng, Tsan Sheng |
description | We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively. |
doi_str_mv | 10.1016/j.ejor.2011.01.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019690869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171100107X</els_id><sourcerecordid>2316619471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMoeKz-Aa8WQfBmT_OxyW5AEClqSwuFotchm53QrLubY5I9pf_eWU7phReGmWQIz_symRDyntE9o0ydj3sYY9pzytieYkjxguxY1_JadYq-JDsq2rbmnLWvyZucR0opk0zuyJe72K-5VPM6lVDPNv2GUi3wkI-wDDFVcxxgytVDKPdVWAqko52qAWa7DNVgi31LXnk7ZXj3dJ6RX9-__by4rG9uf1xdfL2pXdPpUgvdOPCt753VfeOUaKSXHXcd1UpLrb1sPHWtE9oq4SR4N9DeCq6dYKzXvTgjn06-hxT_rJCLmUN2ME12gbhmg1NAJ9opjeiHf9AxrmnB7kynGG84pwIhfoJcijkn8OaQAj7_EZ02M2VGs43UbCM1FENuouuTKMEB3LMCcCEK2RyNsJxx3B-3apMKG7YS84ApFN60wtyXGd0-PvVps7OTT3ZxIT-78oZq2WiK3OcThx8BxwDJZBdgcTCEBK6YIYb_Nf0XNbalNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861242203</pqid></control><display><type>article</type><title>Robust multi-market newsvendor models with interval demand data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lin, Jun ; Ng, Tsan Sheng</creator><creatorcontrib>Lin, Jun ; Ng, Tsan Sheng</creatorcontrib><description>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2011.01.053</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Decision theory. Utility theory ; Demand ; Exact sciences and technology ; Integer programming ; Intervals ; Inventory control, production control. Distribution ; Marketing ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Minimax regret ; Minimax technique ; Newsvendor problem ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Order quantity ; Risk analysis ; Risk analysis Newsvendor problem Minimax regret Uncertainty modeling ; Risk theory. Actuarial science ; Studies ; Uncertainty modeling</subject><ispartof>European journal of operational research, 2011-07, Vol.212 (2), p.361-373</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 16, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</citedby><cites>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24095490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a212_3ay_3a2011_3ai_3a2_3ap_3a361-373.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Ng, Tsan Sheng</creatorcontrib><title>Robust multi-market newsvendor models with interval demand data</title><title>European journal of operational research</title><description>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Decision theory. Utility theory</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Integer programming</subject><subject>Intervals</subject><subject>Inventory control, production control. Distribution</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Minimax regret</subject><subject>Minimax technique</subject><subject>Newsvendor problem</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Order quantity</subject><subject>Risk analysis</subject><subject>Risk analysis Newsvendor problem Minimax regret Uncertainty modeling</subject><subject>Risk theory. Actuarial science</subject><subject>Studies</subject><subject>Uncertainty modeling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFTEQhoMoeKz-Aa8WQfBmT_OxyW5AEClqSwuFotchm53QrLubY5I9pf_eWU7phReGmWQIz_symRDyntE9o0ydj3sYY9pzytieYkjxguxY1_JadYq-JDsq2rbmnLWvyZucR0opk0zuyJe72K-5VPM6lVDPNv2GUi3wkI-wDDFVcxxgytVDKPdVWAqko52qAWa7DNVgi31LXnk7ZXj3dJ6RX9-__by4rG9uf1xdfL2pXdPpUgvdOPCt753VfeOUaKSXHXcd1UpLrb1sPHWtE9oq4SR4N9DeCq6dYKzXvTgjn06-hxT_rJCLmUN2ME12gbhmg1NAJ9opjeiHf9AxrmnB7kynGG84pwIhfoJcijkn8OaQAj7_EZ02M2VGs43UbCM1FENuouuTKMEB3LMCcCEK2RyNsJxx3B-3apMKG7YS84ApFN60wtyXGd0-PvVps7OTT3ZxIT-78oZq2WiK3OcThx8BxwDJZBdgcTCEBK6YIYb_Nf0XNbalNA</recordid><startdate>20110716</startdate><enddate>20110716</enddate><creator>Lin, Jun</creator><creator>Ng, Tsan Sheng</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20110716</creationdate><title>Robust multi-market newsvendor models with interval demand data</title><author>Lin, Jun ; Ng, Tsan Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Decision theory. Utility theory</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Integer programming</topic><topic>Intervals</topic><topic>Inventory control, production control. Distribution</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Minimax regret</topic><topic>Minimax technique</topic><topic>Newsvendor problem</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Order quantity</topic><topic>Risk analysis</topic><topic>Risk analysis Newsvendor problem Minimax regret Uncertainty modeling</topic><topic>Risk theory. Actuarial science</topic><topic>Studies</topic><topic>Uncertainty modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Ng, Tsan Sheng</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jun</au><au>Ng, Tsan Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust multi-market newsvendor models with interval demand data</atitle><jtitle>European journal of operational research</jtitle><date>2011-07-16</date><risdate>2011</risdate><volume>212</volume><issue>2</issue><spage>361</spage><epage>373</epage><pages>361-373</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2011.01.053</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2011-07, Vol.212 (2), p.361-373 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019690869 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Approximation Decision theory. Utility theory Demand Exact sciences and technology Integer programming Intervals Inventory control, production control. Distribution Marketing Mathematical analysis Mathematical models Mathematical programming Minimax regret Minimax technique Newsvendor problem Operational research and scientific management Operational research. Management science Optimization algorithms Order quantity Risk analysis Risk analysis Newsvendor problem Minimax regret Uncertainty modeling Risk theory. Actuarial science Studies Uncertainty modeling |
title | Robust multi-market newsvendor models with interval demand data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20multi-market%20newsvendor%20models%20with%20interval%20demand%20data&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Lin,%20Jun&rft.date=2011-07-16&rft.volume=212&rft.issue=2&rft.spage=361&rft.epage=373&rft.pages=361-373&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2011.01.053&rft_dat=%3Cproquest_cross%3E2316619471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861242203&rft_id=info:pmid/&rfr_iscdi=true |