Loading…

Robust multi-market newsvendor models with interval demand data

We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2011-07, Vol.212 (2), p.361-373
Main Authors: Lin, Jun, Ng, Tsan Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3
cites cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3
container_end_page 373
container_issue 2
container_start_page 361
container_title European journal of operational research
container_volume 212
creator Lin, Jun
Ng, Tsan Sheng
description We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.
doi_str_mv 10.1016/j.ejor.2011.01.053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019690869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171100107X</els_id><sourcerecordid>2316619471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMoeKz-Aa8WQfBmT_OxyW5AEClqSwuFotchm53QrLubY5I9pf_eWU7phReGmWQIz_symRDyntE9o0ydj3sYY9pzytieYkjxguxY1_JadYq-JDsq2rbmnLWvyZucR0opk0zuyJe72K-5VPM6lVDPNv2GUi3wkI-wDDFVcxxgytVDKPdVWAqko52qAWa7DNVgi31LXnk7ZXj3dJ6RX9-__by4rG9uf1xdfL2pXdPpUgvdOPCt753VfeOUaKSXHXcd1UpLrb1sPHWtE9oq4SR4N9DeCq6dYKzXvTgjn06-hxT_rJCLmUN2ME12gbhmg1NAJ9opjeiHf9AxrmnB7kynGG84pwIhfoJcijkn8OaQAj7_EZ02M2VGs43UbCM1FENuouuTKMEB3LMCcCEK2RyNsJxx3B-3apMKG7YS84ApFN60wtyXGd0-PvVps7OTT3ZxIT-78oZq2WiK3OcThx8BxwDJZBdgcTCEBK6YIYb_Nf0XNbalNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861242203</pqid></control><display><type>article</type><title>Robust multi-market newsvendor models with interval demand data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lin, Jun ; Ng, Tsan Sheng</creator><creatorcontrib>Lin, Jun ; Ng, Tsan Sheng</creatorcontrib><description>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2011.01.053</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Decision theory. Utility theory ; Demand ; Exact sciences and technology ; Integer programming ; Intervals ; Inventory control, production control. Distribution ; Marketing ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Minimax regret ; Minimax technique ; Newsvendor problem ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Order quantity ; Risk analysis ; Risk analysis Newsvendor problem Minimax regret Uncertainty modeling ; Risk theory. Actuarial science ; Studies ; Uncertainty modeling</subject><ispartof>European journal of operational research, 2011-07, Vol.212 (2), p.361-373</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 16, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</citedby><cites>FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24095490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a212_3ay_3a2011_3ai_3a2_3ap_3a361-373.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Ng, Tsan Sheng</creatorcontrib><title>Robust multi-market newsvendor models with interval demand data</title><title>European journal of operational research</title><description>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Decision theory. Utility theory</subject><subject>Demand</subject><subject>Exact sciences and technology</subject><subject>Integer programming</subject><subject>Intervals</subject><subject>Inventory control, production control. Distribution</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Minimax regret</subject><subject>Minimax technique</subject><subject>Newsvendor problem</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Order quantity</subject><subject>Risk analysis</subject><subject>Risk analysis Newsvendor problem Minimax regret Uncertainty modeling</subject><subject>Risk theory. Actuarial science</subject><subject>Studies</subject><subject>Uncertainty modeling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFTEQhoMoeKz-Aa8WQfBmT_OxyW5AEClqSwuFotchm53QrLubY5I9pf_eWU7phReGmWQIz_symRDyntE9o0ydj3sYY9pzytieYkjxguxY1_JadYq-JDsq2rbmnLWvyZucR0opk0zuyJe72K-5VPM6lVDPNv2GUi3wkI-wDDFVcxxgytVDKPdVWAqko52qAWa7DNVgi31LXnk7ZXj3dJ6RX9-__by4rG9uf1xdfL2pXdPpUgvdOPCt753VfeOUaKSXHXcd1UpLrb1sPHWtE9oq4SR4N9DeCq6dYKzXvTgjn06-hxT_rJCLmUN2ME12gbhmg1NAJ9opjeiHf9AxrmnB7kynGG84pwIhfoJcijkn8OaQAj7_EZ02M2VGs43UbCM1FENuouuTKMEB3LMCcCEK2RyNsJxx3B-3apMKG7YS84ApFN60wtyXGd0-PvVps7OTT3ZxIT-78oZq2WiK3OcThx8BxwDJZBdgcTCEBK6YIYb_Nf0XNbalNA</recordid><startdate>20110716</startdate><enddate>20110716</enddate><creator>Lin, Jun</creator><creator>Ng, Tsan Sheng</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20110716</creationdate><title>Robust multi-market newsvendor models with interval demand data</title><author>Lin, Jun ; Ng, Tsan Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Decision theory. Utility theory</topic><topic>Demand</topic><topic>Exact sciences and technology</topic><topic>Integer programming</topic><topic>Intervals</topic><topic>Inventory control, production control. Distribution</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Minimax regret</topic><topic>Minimax technique</topic><topic>Newsvendor problem</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Order quantity</topic><topic>Risk analysis</topic><topic>Risk analysis Newsvendor problem Minimax regret Uncertainty modeling</topic><topic>Risk theory. Actuarial science</topic><topic>Studies</topic><topic>Uncertainty modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Ng, Tsan Sheng</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jun</au><au>Ng, Tsan Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust multi-market newsvendor models with interval demand data</atitle><jtitle>European journal of operational research</jtitle><date>2011-07-16</date><risdate>2011</risdate><volume>212</volume><issue>2</issue><spage>361</spage><epage>373</epage><pages>361-373</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a robust model for determining the optimal order quantity and market selection for short-life-cycle products in a single period, newsvendor setting. Due to limited information about demand distribution in particular for short-life-cycle products, stochastic modeling approaches may not be suitable. We propose the minimax regret multi-market newsvendor model, where the demands are only known to be bounded within some given interval. In the basic version of the problem, a linear time solution method is developed. For the capacitated case, we establish some structural results to reduce the problem size, and then propose an approximation solution algorithm based on integer programming. Finally, we compare the performance of the proposed minimax regret model against the typical average-case and worst-case models. Our test results demonstrate that the proposed minimax regret model outperformed the average-case and worst-case models in terms of risk-related criteria and mean profit, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2011.01.053</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2011-07, Vol.212 (2), p.361-373
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_1019690869
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Approximation
Decision theory. Utility theory
Demand
Exact sciences and technology
Integer programming
Intervals
Inventory control, production control. Distribution
Marketing
Mathematical analysis
Mathematical models
Mathematical programming
Minimax regret
Minimax technique
Newsvendor problem
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Order quantity
Risk analysis
Risk analysis Newsvendor problem Minimax regret Uncertainty modeling
Risk theory. Actuarial science
Studies
Uncertainty modeling
title Robust multi-market newsvendor models with interval demand data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20multi-market%20newsvendor%20models%20with%20interval%20demand%20data&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Lin,%20Jun&rft.date=2011-07-16&rft.volume=212&rft.issue=2&rft.spage=361&rft.epage=373&rft.pages=361-373&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2011.01.053&rft_dat=%3Cproquest_cross%3E2316619471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-394cef7fbca9b4c6345f582c80969599f54f0c7c39a63c5efcd0ba329c311b9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861242203&rft_id=info:pmid/&rfr_iscdi=true