Loading…
Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor
A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the phot...
Saved in:
Published in: | International journal of hydrogen energy 2011-10, Vol.36 (21), p.13939-13948 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23 |
container_end_page | 13948 |
container_issue | 21 |
container_start_page | 13939 |
container_title | International journal of hydrogen energy |
container_volume | 36 |
creator | Liao, Qiang Liu, Da-Meng Ye, Ding-Ding Zhu, Xun Lee, Duu-Jong |
description | A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules. |
doi_str_mv | 10.1016/j.ijhydene.2011.03.088 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019692568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911006781</els_id><sourcerecordid>1019692568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCshHLgl2nDjxDVTxJxVxgRuS5Thr6iqJg-1SlafHVeHMaVermdHsh9AlJTkllF-vc7te7ToYIS8IpTlhOWmaIzSjTS0yVjb1MZoRxknGqBCn6CyENSG0JqWYofdnFVcwqGi16vHgOujt-IGdwXHrsmmlAmDTuy1WY4ejV2OYnI_YjumA7TC41vb2G7pMQ9_jaeViujgPSkfnz9GJUX2Ai985R2_3d6-Lx2z58vC0uF1mmpVVzNoOdNWmXddgGqJMalaRBihjnLbcdAUlTBQCRC04rUBVVVO2VGiqCDGmYHN0dcidvPvcQIhysGFfSI3gNkEmTIKLouJNkvKDVHsXggcjJ28H5XdJtNdxuZZ_OOUepyRMJpzJeHMwQnrky4KXQVsYNXTWg46yc_a_iB--zIMf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019692568</pqid></control><display><type>article</type><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><source>ScienceDirect Journals</source><creator>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</creator><creatorcontrib>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</creatorcontrib><description>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.03.088</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bacteria ; Biochemistry ; Granular materials ; Granules ; Hydrogen production ; Immobilized-cell photobioreactor ; Influents ; Mass transport ; Mathematical models ; Packed bed ; Transport ; Two-phase flow</subject><ispartof>International journal of hydrogen energy, 2011-10, Vol.36 (21), p.13939-13948</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</citedby><cites>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Liu, Da-Meng</creatorcontrib><creatorcontrib>Ye, Ding-Ding</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Lee, Duu-Jong</creatorcontrib><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><title>International journal of hydrogen energy</title><description>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</description><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Hydrogen production</subject><subject>Immobilized-cell photobioreactor</subject><subject>Influents</subject><subject>Mass transport</subject><subject>Mathematical models</subject><subject>Packed bed</subject><subject>Transport</subject><subject>Two-phase flow</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCshHLgl2nDjxDVTxJxVxgRuS5Thr6iqJg-1SlafHVeHMaVermdHsh9AlJTkllF-vc7te7ToYIS8IpTlhOWmaIzSjTS0yVjb1MZoRxknGqBCn6CyENSG0JqWYofdnFVcwqGi16vHgOujt-IGdwXHrsmmlAmDTuy1WY4ejV2OYnI_YjumA7TC41vb2G7pMQ9_jaeViujgPSkfnz9GJUX2Ai985R2_3d6-Lx2z58vC0uF1mmpVVzNoOdNWmXddgGqJMalaRBihjnLbcdAUlTBQCRC04rUBVVVO2VGiqCDGmYHN0dcidvPvcQIhysGFfSI3gNkEmTIKLouJNkvKDVHsXggcjJ28H5XdJtNdxuZZ_OOUepyRMJpzJeHMwQnrky4KXQVsYNXTWg46yc_a_iB--zIMf</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Liao, Qiang</creator><creator>Liu, Da-Meng</creator><creator>Ye, Ding-Ding</creator><creator>Zhu, Xun</creator><creator>Lee, Duu-Jong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><author>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Hydrogen production</topic><topic>Immobilized-cell photobioreactor</topic><topic>Influents</topic><topic>Mass transport</topic><topic>Mathematical models</topic><topic>Packed bed</topic><topic>Transport</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Liu, Da-Meng</creatorcontrib><creatorcontrib>Ye, Ding-Ding</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Lee, Duu-Jong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qiang</au><au>Liu, Da-Meng</au><au>Ye, Ding-Ding</au><au>Zhu, Xun</au><au>Lee, Duu-Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>36</volume><issue>21</issue><spage>13939</spage><epage>13948</epage><pages>13939-13948</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.03.088</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2011-10, Vol.36 (21), p.13939-13948 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019692568 |
source | ScienceDirect Journals |
subjects | Bacteria Biochemistry Granular materials Granules Hydrogen production Immobilized-cell photobioreactor Influents Mass transport Mathematical models Packed bed Transport Two-phase flow |
title | Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20two-phase%20flow%20and%20transport%20in%20an%20immobilized-cell%20photobioreactor&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Liao,%20Qiang&rft.date=2011-10-01&rft.volume=36&rft.issue=21&rft.spage=13939&rft.epage=13948&rft.pages=13939-13948&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2011.03.088&rft_dat=%3Cproquest_cross%3E1019692568%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019692568&rft_id=info:pmid/&rfr_iscdi=true |