Loading…

Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor

A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the phot...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2011-10, Vol.36 (21), p.13939-13948
Main Authors: Liao, Qiang, Liu, Da-Meng, Ye, Ding-Ding, Zhu, Xun, Lee, Duu-Jong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23
cites cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23
container_end_page 13948
container_issue 21
container_start_page 13939
container_title International journal of hydrogen energy
container_volume 36
creator Liao, Qiang
Liu, Da-Meng
Ye, Ding-Ding
Zhu, Xun
Lee, Duu-Jong
description A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.
doi_str_mv 10.1016/j.ijhydene.2011.03.088
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019692568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911006781</els_id><sourcerecordid>1019692568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCshHLgl2nDjxDVTxJxVxgRuS5Thr6iqJg-1SlafHVeHMaVermdHsh9AlJTkllF-vc7te7ToYIS8IpTlhOWmaIzSjTS0yVjb1MZoRxknGqBCn6CyENSG0JqWYofdnFVcwqGi16vHgOujt-IGdwXHrsmmlAmDTuy1WY4ejV2OYnI_YjumA7TC41vb2G7pMQ9_jaeViujgPSkfnz9GJUX2Ai985R2_3d6-Lx2z58vC0uF1mmpVVzNoOdNWmXddgGqJMalaRBihjnLbcdAUlTBQCRC04rUBVVVO2VGiqCDGmYHN0dcidvPvcQIhysGFfSI3gNkEmTIKLouJNkvKDVHsXggcjJ28H5XdJtNdxuZZ_OOUepyRMJpzJeHMwQnrky4KXQVsYNXTWg46yc_a_iB--zIMf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019692568</pqid></control><display><type>article</type><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><source>ScienceDirect Journals</source><creator>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</creator><creatorcontrib>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</creatorcontrib><description>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.03.088</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bacteria ; Biochemistry ; Granular materials ; Granules ; Hydrogen production ; Immobilized-cell photobioreactor ; Influents ; Mass transport ; Mathematical models ; Packed bed ; Transport ; Two-phase flow</subject><ispartof>International journal of hydrogen energy, 2011-10, Vol.36 (21), p.13939-13948</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</citedby><cites>FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Liu, Da-Meng</creatorcontrib><creatorcontrib>Ye, Ding-Ding</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Lee, Duu-Jong</creatorcontrib><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><title>International journal of hydrogen energy</title><description>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</description><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Granular materials</subject><subject>Granules</subject><subject>Hydrogen production</subject><subject>Immobilized-cell photobioreactor</subject><subject>Influents</subject><subject>Mass transport</subject><subject>Mathematical models</subject><subject>Packed bed</subject><subject>Transport</subject><subject>Two-phase flow</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCshHLgl2nDjxDVTxJxVxgRuS5Thr6iqJg-1SlafHVeHMaVermdHsh9AlJTkllF-vc7te7ToYIS8IpTlhOWmaIzSjTS0yVjb1MZoRxknGqBCn6CyENSG0JqWYofdnFVcwqGi16vHgOujt-IGdwXHrsmmlAmDTuy1WY4ejV2OYnI_YjumA7TC41vb2G7pMQ9_jaeViujgPSkfnz9GJUX2Ai985R2_3d6-Lx2z58vC0uF1mmpVVzNoOdNWmXddgGqJMalaRBihjnLbcdAUlTBQCRC04rUBVVVO2VGiqCDGmYHN0dcidvPvcQIhysGFfSI3gNkEmTIKLouJNkvKDVHsXggcjJ28H5XdJtNdxuZZ_OOUepyRMJpzJeHMwQnrky4KXQVsYNXTWg46yc_a_iB--zIMf</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Liao, Qiang</creator><creator>Liu, Da-Meng</creator><creator>Ye, Ding-Ding</creator><creator>Zhu, Xun</creator><creator>Lee, Duu-Jong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</title><author>Liao, Qiang ; Liu, Da-Meng ; Ye, Ding-Ding ; Zhu, Xun ; Lee, Duu-Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Granular materials</topic><topic>Granules</topic><topic>Hydrogen production</topic><topic>Immobilized-cell photobioreactor</topic><topic>Influents</topic><topic>Mass transport</topic><topic>Mathematical models</topic><topic>Packed bed</topic><topic>Transport</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Liu, Da-Meng</creatorcontrib><creatorcontrib>Ye, Ding-Ding</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Lee, Duu-Jong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qiang</au><au>Liu, Da-Meng</au><au>Ye, Ding-Ding</au><au>Zhu, Xun</au><au>Lee, Duu-Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>36</volume><issue>21</issue><spage>13939</spage><epage>13948</epage><pages>13939-13948</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.03.088</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2011-10, Vol.36 (21), p.13939-13948
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1019692568
source ScienceDirect Journals
subjects Bacteria
Biochemistry
Granular materials
Granules
Hydrogen production
Immobilized-cell photobioreactor
Influents
Mass transport
Mathematical models
Packed bed
Transport
Two-phase flow
title Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20two-phase%20flow%20and%20transport%20in%20an%20immobilized-cell%20photobioreactor&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Liao,%20Qiang&rft.date=2011-10-01&rft.volume=36&rft.issue=21&rft.spage=13939&rft.epage=13948&rft.pages=13939-13948&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2011.03.088&rft_dat=%3Cproquest_cross%3E1019692568%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-bdec5bc34c7ef80af049508e13361b6fd2103929e979615ea5584b19c1a00ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019692568&rft_id=info:pmid/&rfr_iscdi=true