Loading…

Effect of transition and non-transition metals during the synthesis of carbon xerogels

[Display omitted] ► Synthesis of metal doped carbon xerogels by soft templating approach using triblock copolymers. ► Effect of different metal ions during the formation of polymer xerogels. ► Morphology and surface area of the CXs depend on the metal ions and pH of the resol solution. ► Mn 2+ and S...

Full description

Saved in:
Bibliographic Details
Published in:Microporous and mesoporous materials 2011-02, Vol.138 (1), p.149-156
Main Authors: Chandra, Sourov, Bag, Sourav, Bhar, Radhaballabh, Pramanik, Panchanan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3
cites cdi_FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3
container_end_page 156
container_issue 1
container_start_page 149
container_title Microporous and mesoporous materials
container_volume 138
creator Chandra, Sourov
Bag, Sourav
Bhar, Radhaballabh
Pramanik, Panchanan
description [Display omitted] ► Synthesis of metal doped carbon xerogels by soft templating approach using triblock copolymers. ► Effect of different metal ions during the formation of polymer xerogels. ► Morphology and surface area of the CXs depend on the metal ions and pH of the resol solution. ► Mn 2+ and Sr 2+ doped CXs give the highest surface area. The aim of this present study was to synthesis transition and non-transition metal-doped carbon xerogels by soft templating approach using resorcinol, p-cresol and formaldehyde as the organic precursors along with poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO/PPO/PEO) triblock copolymers and cetylpyridinium chloride as the template materials. The effects of metal ions on the surface area as well as the morphology of the resultant carbon materials were evaluated by using metal ions, such as, manganese, cobalt, copper, calcium, strontium and barium during the formation of RF (resorcinol–formaldehyde) gel. Resorcinol/formaldehyde molar ratio (R/F molar ratio), initial pH of the resol solution and percentage of the metal salts with respect to resorcinol (w/w) were also chosen as effective independent experimental variables. For non-transition metals the highest BET surface area (968 m 2/g) was obtained for 5% strontium at pH 8 in the presence of cetylpyridinium chloride as the surfactant, whereas manganese doped carbon xerogel give the highest surface area (1038 m 2/g) among the all transition metal doped carbon materials under the optimum condition of 0.35 (1:2.85) resorcinol/formaldehyde molar ratio, initial pH of resol solution 3.0, and 11% (w/w) Mn 2+ salt. The materials were characterized by FE-SEM, HR-TEM, pore size and surface area analysis.
doi_str_mv 10.1016/j.micromeso.2010.09.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019693452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1387181110002970</els_id><sourcerecordid>1019693452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFZ_g3sRvGxNNtskeyylfkDBi3oN2eykpuwmNbMV--9NaSnePL3D8Lwz8GTZLSUTSih_WE96Z2LoAcOkJGlL6gmh5Vk2olKwgpGanaeZSVFQSelldoW4JoQKWtJR9rGwFsyQB5sPUXt0gws-177NffDFn1UPg-4wb7fR-VU-fEKOO58CHe7LRscmUT8Qwwo6vM4ubMLh5pjj7P1x8TZ_LpavTy_z2bIwTMihsCU0rZzCtGZUC0GnlDWWGW5IzYHxhrdCC1lp3oCkhutGpqhlownoBsCycXZ_uLuJ4WsLOKjeoYGu0x7CFlUyVPOaVdMyoeKAJlmIEazaRNfruEvQnuNqrU4m1d6kIrVKJlPz7vhEo9GdTVKMw1O9ZFUlSyoSNztwSQB8O4gKjQNvoHUxOVZtcP_--gUM_I_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019693452</pqid></control><display><type>article</type><title>Effect of transition and non-transition metals during the synthesis of carbon xerogels</title><source>ScienceDirect Freedom Collection</source><creator>Chandra, Sourov ; Bag, Sourav ; Bhar, Radhaballabh ; Pramanik, Panchanan</creator><creatorcontrib>Chandra, Sourov ; Bag, Sourav ; Bhar, Radhaballabh ; Pramanik, Panchanan</creatorcontrib><description>[Display omitted] ► Synthesis of metal doped carbon xerogels by soft templating approach using triblock copolymers. ► Effect of different metal ions during the formation of polymer xerogels. ► Morphology and surface area of the CXs depend on the metal ions and pH of the resol solution. ► Mn 2+ and Sr 2+ doped CXs give the highest surface area. The aim of this present study was to synthesis transition and non-transition metal-doped carbon xerogels by soft templating approach using resorcinol, p-cresol and formaldehyde as the organic precursors along with poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO/PPO/PEO) triblock copolymers and cetylpyridinium chloride as the template materials. The effects of metal ions on the surface area as well as the morphology of the resultant carbon materials were evaluated by using metal ions, such as, manganese, cobalt, copper, calcium, strontium and barium during the formation of RF (resorcinol–formaldehyde) gel. Resorcinol/formaldehyde molar ratio (R/F molar ratio), initial pH of the resol solution and percentage of the metal salts with respect to resorcinol (w/w) were also chosen as effective independent experimental variables. For non-transition metals the highest BET surface area (968 m 2/g) was obtained for 5% strontium at pH 8 in the presence of cetylpyridinium chloride as the surfactant, whereas manganese doped carbon xerogel give the highest surface area (1038 m 2/g) among the all transition metal doped carbon materials under the optimum condition of 0.35 (1:2.85) resorcinol/formaldehyde molar ratio, initial pH of resol solution 3.0, and 11% (w/w) Mn 2+ salt. The materials were characterized by FE-SEM, HR-TEM, pore size and surface area analysis.</description><identifier>ISSN: 1387-1811</identifier><identifier>EISSN: 1873-3093</identifier><identifier>DOI: 10.1016/j.micromeso.2010.09.012</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Carbon ; Carbon xerogels ; Chemistry ; Chlorides ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Exact sciences and technology ; Formaldehyde ; General and physical chemistry ; Manganese ; Metal ions ; Porous ; Porous materials ; Sol–gel polymerization ; Surface area ; Transition and non-transition metals ; Xerogels</subject><ispartof>Microporous and mesoporous materials, 2011-02, Vol.138 (1), p.149-156</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3</citedby><cites>FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23448217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandra, Sourov</creatorcontrib><creatorcontrib>Bag, Sourav</creatorcontrib><creatorcontrib>Bhar, Radhaballabh</creatorcontrib><creatorcontrib>Pramanik, Panchanan</creatorcontrib><title>Effect of transition and non-transition metals during the synthesis of carbon xerogels</title><title>Microporous and mesoporous materials</title><description>[Display omitted] ► Synthesis of metal doped carbon xerogels by soft templating approach using triblock copolymers. ► Effect of different metal ions during the formation of polymer xerogels. ► Morphology and surface area of the CXs depend on the metal ions and pH of the resol solution. ► Mn 2+ and Sr 2+ doped CXs give the highest surface area. The aim of this present study was to synthesis transition and non-transition metal-doped carbon xerogels by soft templating approach using resorcinol, p-cresol and formaldehyde as the organic precursors along with poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO/PPO/PEO) triblock copolymers and cetylpyridinium chloride as the template materials. The effects of metal ions on the surface area as well as the morphology of the resultant carbon materials were evaluated by using metal ions, such as, manganese, cobalt, copper, calcium, strontium and barium during the formation of RF (resorcinol–formaldehyde) gel. Resorcinol/formaldehyde molar ratio (R/F molar ratio), initial pH of the resol solution and percentage of the metal salts with respect to resorcinol (w/w) were also chosen as effective independent experimental variables. For non-transition metals the highest BET surface area (968 m 2/g) was obtained for 5% strontium at pH 8 in the presence of cetylpyridinium chloride as the surfactant, whereas manganese doped carbon xerogel give the highest surface area (1038 m 2/g) among the all transition metal doped carbon materials under the optimum condition of 0.35 (1:2.85) resorcinol/formaldehyde molar ratio, initial pH of resol solution 3.0, and 11% (w/w) Mn 2+ salt. The materials were characterized by FE-SEM, HR-TEM, pore size and surface area analysis.</description><subject>Carbon</subject><subject>Carbon xerogels</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Formaldehyde</subject><subject>General and physical chemistry</subject><subject>Manganese</subject><subject>Metal ions</subject><subject>Porous</subject><subject>Porous materials</subject><subject>Sol–gel polymerization</subject><subject>Surface area</subject><subject>Transition and non-transition metals</subject><subject>Xerogels</subject><issn>1387-1811</issn><issn>1873-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFZ_g3sRvGxNNtskeyylfkDBi3oN2eykpuwmNbMV--9NaSnePL3D8Lwz8GTZLSUTSih_WE96Z2LoAcOkJGlL6gmh5Vk2olKwgpGanaeZSVFQSelldoW4JoQKWtJR9rGwFsyQB5sPUXt0gws-177NffDFn1UPg-4wb7fR-VU-fEKOO58CHe7LRscmUT8Qwwo6vM4ubMLh5pjj7P1x8TZ_LpavTy_z2bIwTMihsCU0rZzCtGZUC0GnlDWWGW5IzYHxhrdCC1lp3oCkhutGpqhlownoBsCycXZ_uLuJ4WsLOKjeoYGu0x7CFlUyVPOaVdMyoeKAJlmIEazaRNfruEvQnuNqrU4m1d6kIrVKJlPz7vhEo9GdTVKMw1O9ZFUlSyoSNztwSQB8O4gKjQNvoHUxOVZtcP_--gUM_I_-</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chandra, Sourov</creator><creator>Bag, Sourav</creator><creator>Bhar, Radhaballabh</creator><creator>Pramanik, Panchanan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Effect of transition and non-transition metals during the synthesis of carbon xerogels</title><author>Chandra, Sourov ; Bag, Sourav ; Bhar, Radhaballabh ; Pramanik, Panchanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon</topic><topic>Carbon xerogels</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Formaldehyde</topic><topic>General and physical chemistry</topic><topic>Manganese</topic><topic>Metal ions</topic><topic>Porous</topic><topic>Porous materials</topic><topic>Sol–gel polymerization</topic><topic>Surface area</topic><topic>Transition and non-transition metals</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandra, Sourov</creatorcontrib><creatorcontrib>Bag, Sourav</creatorcontrib><creatorcontrib>Bhar, Radhaballabh</creatorcontrib><creatorcontrib>Pramanik, Panchanan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microporous and mesoporous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandra, Sourov</au><au>Bag, Sourav</au><au>Bhar, Radhaballabh</au><au>Pramanik, Panchanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of transition and non-transition metals during the synthesis of carbon xerogels</atitle><jtitle>Microporous and mesoporous materials</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>138</volume><issue>1</issue><spage>149</spage><epage>156</epage><pages>149-156</pages><issn>1387-1811</issn><eissn>1873-3093</eissn><abstract>[Display omitted] ► Synthesis of metal doped carbon xerogels by soft templating approach using triblock copolymers. ► Effect of different metal ions during the formation of polymer xerogels. ► Morphology and surface area of the CXs depend on the metal ions and pH of the resol solution. ► Mn 2+ and Sr 2+ doped CXs give the highest surface area. The aim of this present study was to synthesis transition and non-transition metal-doped carbon xerogels by soft templating approach using resorcinol, p-cresol and formaldehyde as the organic precursors along with poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO/PPO/PEO) triblock copolymers and cetylpyridinium chloride as the template materials. The effects of metal ions on the surface area as well as the morphology of the resultant carbon materials were evaluated by using metal ions, such as, manganese, cobalt, copper, calcium, strontium and barium during the formation of RF (resorcinol–formaldehyde) gel. Resorcinol/formaldehyde molar ratio (R/F molar ratio), initial pH of the resol solution and percentage of the metal salts with respect to resorcinol (w/w) were also chosen as effective independent experimental variables. For non-transition metals the highest BET surface area (968 m 2/g) was obtained for 5% strontium at pH 8 in the presence of cetylpyridinium chloride as the surfactant, whereas manganese doped carbon xerogel give the highest surface area (1038 m 2/g) among the all transition metal doped carbon materials under the optimum condition of 0.35 (1:2.85) resorcinol/formaldehyde molar ratio, initial pH of resol solution 3.0, and 11% (w/w) Mn 2+ salt. The materials were characterized by FE-SEM, HR-TEM, pore size and surface area analysis.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.micromeso.2010.09.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-1811
ispartof Microporous and mesoporous materials, 2011-02, Vol.138 (1), p.149-156
issn 1387-1811
1873-3093
language eng
recordid cdi_proquest_miscellaneous_1019693452
source ScienceDirect Freedom Collection
subjects Carbon
Carbon xerogels
Chemistry
Chlorides
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Exact sciences and technology
Formaldehyde
General and physical chemistry
Manganese
Metal ions
Porous
Porous materials
Sol–gel polymerization
Surface area
Transition and non-transition metals
Xerogels
title Effect of transition and non-transition metals during the synthesis of carbon xerogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20transition%20and%20non-transition%20metals%20during%20the%20synthesis%20of%20carbon%20xerogels&rft.jtitle=Microporous%20and%20mesoporous%20materials&rft.au=Chandra,%20Sourov&rft.date=2011-02-01&rft.volume=138&rft.issue=1&rft.spage=149&rft.epage=156&rft.pages=149-156&rft.issn=1387-1811&rft.eissn=1873-3093&rft_id=info:doi/10.1016/j.micromeso.2010.09.012&rft_dat=%3Cproquest_cross%3E1019693452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-f2ebd85e5931a771513bf3c6c096e36b6d7a784a6be81c6ab881c98ba0eabeef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019693452&rft_id=info:pmid/&rfr_iscdi=true