Loading…
THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY
A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the cha...
Saved in:
Published in: | SIAM journal on applied mathematics 2009-01, Vol.70 (3), p.866-884 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3 |
container_end_page | 884 |
container_issue | 3 |
container_start_page | 866 |
container_title | SIAM journal on applied mathematics |
container_volume | 70 |
creator | SHARPE, GARY J. |
description | A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the chain-branching step, and emphasis is on comparing with previous high activation energy asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however, the finite activation energy results are in qualitative agreement with the asymptotic results, in that the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable as the Lewis number is decreased. However, it is shown that very high activation energies would be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable for finite activation energies than predicted by the asymptotic analysis, in that a lower fuel Lewis number is required for instability. It is also shown that the flame structure and stability can have nonmonotonic dependencies on the activation energy. |
doi_str_mv | 10.1137/090750366 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019695613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862535</jstor_id><sourcerecordid>27862535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3</originalsourceid><addsrcrecordid>eNpd0ctKw0AUBuBBFKyXhQ8gDK50EZ1LM5NZxnTSDOQiyajtKqTpFFpaUzPtQnx5RypduDqcn4_DDweAG4weMab8CQnEfUQZOwEDjITvcUwmp2CAXOZhKsQ5uLB2hRDGbCgG4FsnsszC1BupOH6t1JuEKq90-KxSpaewiOFLKTM1kSMYp2EmKxgXJQxhpbKXVMIoCVXuPZdhHiUqH7vd4UqXU5gVI5nCd6UTGKtcaQnDSKu3UKsihzKX5Xh6Bc4Wzdqa6795CV5jqaPES4uxilynlg7ZziM-EQE2sxnnpCEsEIjNcdv4hgT-XIiZC4aBIYyiBjeEDBe0FQIFhmMuCJrN6SW4P9zd9t3n3thdvVna1qzXzYfp9rbGCAsmfIapo3f_6Krb9x-uXR1wwQkSFDn0cEBt31nbm0W97Zebpv9yl-rfL9THLzh7e7Aru-v6IyQ8YMSnPv0BtYF2Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879720930</pqid></control><display><type>article</type><title>THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY</title><source>SIAM Journals Archive</source><source>ABI/INFORM Collection</source><source>JSTOR-E-Journals</source><creator>SHARPE, GARY J.</creator><creatorcontrib>SHARPE, GARY J.</creatorcontrib><description>A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the chain-branching step, and emphasis is on comparing with previous high activation energy asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however, the finite activation energy results are in qualitative agreement with the asymptotic results, in that the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable as the Lewis number is decreased. However, it is shown that very high activation energies would be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable for finite activation energies than predicted by the asymptotic analysis, in that a lower fuel Lewis number is required for instability. It is also shown that the flame structure and stability can have nonmonotonic dependencies on the activation energy.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/090750366</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Activation energy ; Asymptotic methods ; Asymptotic properties ; Brownian motion ; Chains ; Chemical reactions ; Combustion temperature ; Crossovers ; Diffusion ; Eigenvalues ; Flame propagation ; Flame structures ; Flames ; Fuels ; Instability ; Lewis numbers ; Mathematical analysis ; Mathematical models ; Premixed flames ; Stability ; Studies</subject><ispartof>SIAM journal on applied mathematics, 2009-01, Vol.70 (3), p.866-884</ispartof><rights>Copyright © 2010 Society for Industrial and Applied Mathematics</rights><rights>Copyright Society for Industrial and Applied Mathematics 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3</citedby><cites>FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862535$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/879720930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3172,11669,27905,27906,36041,36042,44344,58219,58452</link.rule.ids></links><search><creatorcontrib>SHARPE, GARY J.</creatorcontrib><title>THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY</title><title>SIAM journal on applied mathematics</title><description>A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the chain-branching step, and emphasis is on comparing with previous high activation energy asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however, the finite activation energy results are in qualitative agreement with the asymptotic results, in that the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable as the Lewis number is decreased. However, it is shown that very high activation energies would be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable for finite activation energies than predicted by the asymptotic analysis, in that a lower fuel Lewis number is required for instability. It is also shown that the flame structure and stability can have nonmonotonic dependencies on the activation energy.</description><subject>Activation energy</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Brownian motion</subject><subject>Chains</subject><subject>Chemical reactions</subject><subject>Combustion temperature</subject><subject>Crossovers</subject><subject>Diffusion</subject><subject>Eigenvalues</subject><subject>Flame propagation</subject><subject>Flame structures</subject><subject>Flames</subject><subject>Fuels</subject><subject>Instability</subject><subject>Lewis numbers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Premixed flames</subject><subject>Stability</subject><subject>Studies</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpd0ctKw0AUBuBBFKyXhQ8gDK50EZ1LM5NZxnTSDOQiyajtKqTpFFpaUzPtQnx5RypduDqcn4_DDweAG4weMab8CQnEfUQZOwEDjITvcUwmp2CAXOZhKsQ5uLB2hRDGbCgG4FsnsszC1BupOH6t1JuEKq90-KxSpaewiOFLKTM1kSMYp2EmKxgXJQxhpbKXVMIoCVXuPZdhHiUqH7vd4UqXU5gVI5nCd6UTGKtcaQnDSKu3UKsihzKX5Xh6Bc4Wzdqa6795CV5jqaPES4uxilynlg7ZziM-EQE2sxnnpCEsEIjNcdv4hgT-XIiZC4aBIYyiBjeEDBe0FQIFhmMuCJrN6SW4P9zd9t3n3thdvVna1qzXzYfp9rbGCAsmfIapo3f_6Krb9x-uXR1wwQkSFDn0cEBt31nbm0W97Zebpv9yl-rfL9THLzh7e7Aru-v6IyQ8YMSnPv0BtYF2Xg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>SHARPE, GARY J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY</title><author>SHARPE, GARY J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Activation energy</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Brownian motion</topic><topic>Chains</topic><topic>Chemical reactions</topic><topic>Combustion temperature</topic><topic>Crossovers</topic><topic>Diffusion</topic><topic>Eigenvalues</topic><topic>Flame propagation</topic><topic>Flame structures</topic><topic>Flames</topic><topic>Fuels</topic><topic>Instability</topic><topic>Lewis numbers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Premixed flames</topic><topic>Stability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHARPE, GARY J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHARPE, GARY J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>70</volume><issue>3</issue><spage>866</spage><epage>884</epage><pages>866-884</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the chain-branching step, and emphasis is on comparing with previous high activation energy asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however, the finite activation energy results are in qualitative agreement with the asymptotic results, in that the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable as the Lewis number is decreased. However, it is shown that very high activation energies would be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable for finite activation energies than predicted by the asymptotic analysis, in that a lower fuel Lewis number is required for instability. It is also shown that the flame structure and stability can have nonmonotonic dependencies on the activation energy.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090750366</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2009-01, Vol.70 (3), p.866-884 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_miscellaneous_1019695613 |
source | SIAM Journals Archive; ABI/INFORM Collection; JSTOR-E-Journals |
subjects | Activation energy Asymptotic methods Asymptotic properties Brownian motion Chains Chemical reactions Combustion temperature Crossovers Diffusion Eigenvalues Flame propagation Flame structures Flames Fuels Instability Lewis numbers Mathematical analysis Mathematical models Premixed flames Stability Studies |
title | THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES FOR A SIMPLE CHAIN-BRANCHING CHEMISTRY MODEL WITH FINITE ACTIVATION ENERGY |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THERMAL-DIFFUSIVE%20INSTABILITY%20OF%20PREMIXED%20FLAMES%20FOR%20A%20SIMPLE%20CHAIN-BRANCHING%20CHEMISTRY%20MODEL%20WITH%20FINITE%20ACTIVATION%20ENERGY&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=SHARPE,%20GARY%20J.&rft.date=2009-01-01&rft.volume=70&rft.issue=3&rft.spage=866&rft.epage=884&rft.pages=866-884&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/090750366&rft_dat=%3Cjstor_proqu%3E27862535%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-252981ebb772a268906d1ca5e285d99b89048e2630a1a224f3c9908e717920bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=879720930&rft_id=info:pmid/&rft_jstor_id=27862535&rfr_iscdi=true |