Loading…
Efficient sampling of early signal arrival for estimation of perfusion and transit time in whole-brain arterial spin labeling
Arterial spin labeling can be used to measure both cerebral perfusion and arterial transit time. However, accurate estimation of these parameters requires adequate temporal sampling of the arterial spin labeling difference signal. In whole‐brain multislice acquisitions, two factors reduce the accura...
Saved in:
Published in: | Magnetic resonance in medicine 2012-07, Vol.68 (1), p.179-187 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arterial spin labeling can be used to measure both cerebral perfusion and arterial transit time. However, accurate estimation of these parameters requires adequate temporal sampling of the arterial spin labeling difference signal. In whole‐brain multislice acquisitions, two factors reduce the accuracy of the parameter estimates: saturation of labeled blood in transit and inadequate sampling of early difference signal in superior slices. Label saturation arises when slices are acquired inferior‐to‐superior such that slice selection in proximal slices spoils the label for a distal slice. Inadequate sampling arises when the time spent acquiring inferior slices is too long to allow early sampling of the difference signal in superior slices. A novel approach to multislice imaging is proposed to address these two issues. In round‐robin arterial spin labeling, slices are acquired in a different order after every pair of control‐label acquisitions. Round‐robin arterial spin labeling enables the acquisitions of all slices across the same range of postlabel delays in a descending superior‐to‐inferior order. This eliminates the temporal sampling problem and greatly reduces label saturation. Arterial transit time estimates obtained for the whole brain with round‐robin arterial spin labeling show better agreement with a single‐slice acquisition than do conventional multislice acquisitions. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.23222 |