Loading…
The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis
Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of...
Saved in:
Published in: | Russian Journal of Physical Chemistry 2011-12, Vol.85 (13), p.2327-2335 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model. |
---|---|
ISSN: | 0036-0244 1531-863X |
DOI: | 10.1134/S0036024411130115 |