Loading…
Mean and variance responsive learning
Decision makers are often described as seeking higher expected payoffs and avoiding higher variance in payoffs. We provide some necessary and some sufficient conditions for learning rules, that assume the agent has little prior and feedback information about the environment, to reflect such preferen...
Saved in:
Published in: | Games and economic behavior 2012-07, Vol.75 (2), p.855-866 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3 |
container_end_page | 866 |
container_issue | 2 |
container_start_page | 855 |
container_title | Games and economic behavior |
container_volume | 75 |
creator | Oyarzun, Carlos Sarin, Rajiv |
description | Decision makers are often described as seeking higher expected payoffs and avoiding higher variance in payoffs. We provide some necessary and some sufficient conditions for learning rules, that assume the agent has little prior and feedback information about the environment, to reflect such preferences. We adopt the framework of Börgers, Morales and Sarin (2004, Econometrica) who provide similar results for learning rules that seek higher expected payoffs. Our analysis reveals that a concern for variance leads to quadratic transformations of payoffs to appear in the learning rule. |
doi_str_mv | 10.1016/j.geb.2012.02.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022118154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825612000334</els_id><sourcerecordid>1022118154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLeACF4SZzbJdoMnEf9BxYuel8lmUja0m7rbFvz2bqknD8KDufzeY94T4hKhQEB1OxQLbgsJKAtIwvJITBAayGU1K4_FBHTT5FrW6lScxTgAQC1nMBHXb0w-I99lOwqOvOUscFyPProdZ0um4J1fnIuTnpaRL37vVHw-PX48vOTz9-fXh_t5bispN3nTQ09cEZWlVbLrkWbUqKbsAUG3XaM0EdXQQdXqpkVSbLtKcUusWSHYcipuDrnrMH5tOW7MykXLyyV5HrfRIEiJqLGuEnr1Bx3GbfDpu0RhKqor0InCA2XDGGPg3qyDW1H4TtCeU2YwaTizH85AEpbJc3fwcGq6cxxMtI7TMp0LbDemG90_7h9ruHQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012568408</pqid></control><display><type>article</type><title>Mean and variance responsive learning</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><creator>Oyarzun, Carlos ; Sarin, Rajiv</creator><creatorcontrib>Oyarzun, Carlos ; Sarin, Rajiv</creatorcontrib><description>Decision makers are often described as seeking higher expected payoffs and avoiding higher variance in payoffs. We provide some necessary and some sufficient conditions for learning rules, that assume the agent has little prior and feedback information about the environment, to reflect such preferences. We adopt the framework of Börgers, Morales and Sarin (2004, Econometrica) who provide similar results for learning rules that seek higher expected payoffs. Our analysis reveals that a concern for variance leads to quadratic transformations of payoffs to appear in the learning rule.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1016/j.geb.2012.02.013</identifier><language>eng</language><publisher>Duluth: Elsevier Inc</publisher><subject>Agency theory ; Decision making ; Decision making models ; Expectation ; Information economics ; Learning ; Mean and variance preferences ; Pay-off ; Payoffs ; Preferences ; Reinforcement learning ; Studies ; Variance</subject><ispartof>Games and economic behavior, 2012-07, Vol.75 (2), p.855-866</ispartof><rights>2012</rights><rights>Copyright Academic Press Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3</citedby><cites>FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids></links><search><creatorcontrib>Oyarzun, Carlos</creatorcontrib><creatorcontrib>Sarin, Rajiv</creatorcontrib><title>Mean and variance responsive learning</title><title>Games and economic behavior</title><description>Decision makers are often described as seeking higher expected payoffs and avoiding higher variance in payoffs. We provide some necessary and some sufficient conditions for learning rules, that assume the agent has little prior and feedback information about the environment, to reflect such preferences. We adopt the framework of Börgers, Morales and Sarin (2004, Econometrica) who provide similar results for learning rules that seek higher expected payoffs. Our analysis reveals that a concern for variance leads to quadratic transformations of payoffs to appear in the learning rule.</description><subject>Agency theory</subject><subject>Decision making</subject><subject>Decision making models</subject><subject>Expectation</subject><subject>Information economics</subject><subject>Learning</subject><subject>Mean and variance preferences</subject><subject>Pay-off</subject><subject>Payoffs</subject><subject>Preferences</subject><subject>Reinforcement learning</subject><subject>Studies</subject><subject>Variance</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE9Lw0AQxRdRsFY_gLeACF4SZzbJdoMnEf9BxYuel8lmUja0m7rbFvz2bqknD8KDufzeY94T4hKhQEB1OxQLbgsJKAtIwvJITBAayGU1K4_FBHTT5FrW6lScxTgAQC1nMBHXb0w-I99lOwqOvOUscFyPProdZ0um4J1fnIuTnpaRL37vVHw-PX48vOTz9-fXh_t5bispN3nTQ09cEZWlVbLrkWbUqKbsAUG3XaM0EdXQQdXqpkVSbLtKcUusWSHYcipuDrnrMH5tOW7MykXLyyV5HrfRIEiJqLGuEnr1Bx3GbfDpu0RhKqor0InCA2XDGGPg3qyDW1H4TtCeU2YwaTizH85AEpbJc3fwcGq6cxxMtI7TMp0LbDemG90_7h9ruHQ3</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Oyarzun, Carlos</creator><creator>Sarin, Rajiv</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120701</creationdate><title>Mean and variance responsive learning</title><author>Oyarzun, Carlos ; Sarin, Rajiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agency theory</topic><topic>Decision making</topic><topic>Decision making models</topic><topic>Expectation</topic><topic>Information economics</topic><topic>Learning</topic><topic>Mean and variance preferences</topic><topic>Pay-off</topic><topic>Payoffs</topic><topic>Preferences</topic><topic>Reinforcement learning</topic><topic>Studies</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyarzun, Carlos</creatorcontrib><creatorcontrib>Sarin, Rajiv</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyarzun, Carlos</au><au>Sarin, Rajiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean and variance responsive learning</atitle><jtitle>Games and economic behavior</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>75</volume><issue>2</issue><spage>855</spage><epage>866</epage><pages>855-866</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>Decision makers are often described as seeking higher expected payoffs and avoiding higher variance in payoffs. We provide some necessary and some sufficient conditions for learning rules, that assume the agent has little prior and feedback information about the environment, to reflect such preferences. We adopt the framework of Börgers, Morales and Sarin (2004, Econometrica) who provide similar results for learning rules that seek higher expected payoffs. Our analysis reveals that a concern for variance leads to quadratic transformations of payoffs to appear in the learning rule.</abstract><cop>Duluth</cop><pub>Elsevier Inc</pub><doi>10.1016/j.geb.2012.02.013</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8256 |
ispartof | Games and economic behavior, 2012-07, Vol.75 (2), p.855-866 |
issn | 0899-8256 1090-2473 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022118154 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection |
subjects | Agency theory Decision making Decision making models Expectation Information economics Learning Mean and variance preferences Pay-off Payoffs Preferences Reinforcement learning Studies Variance |
title | Mean and variance responsive learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20and%20variance%20responsive%20learning&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Oyarzun,%20Carlos&rft.date=2012-07-01&rft.volume=75&rft.issue=2&rft.spage=855&rft.epage=866&rft.pages=855-866&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1016/j.geb.2012.02.013&rft_dat=%3Cproquest_cross%3E1022118154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9f0fae4aa33c62df1a7a9693f0108bd968aaa50d04b89b1a6ecd46ebae8e610c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1012568408&rft_id=info:pmid/&rfr_iscdi=true |