Loading…
Using seed particle composition to control structural and optical properties of GaN nanowires
The morphology, structure, and optical properties of gallium nitride (GaN) nanowires grown using metal-organic chemical vapor deposition (MOCVD) on r-plane sapphire using gold and nickel seed particles were investigated. We found that different seed particles result in different growth rates and den...
Saved in:
Published in: | Nanotechnology 2012-07, Vol.23 (28), p.285603-285603 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The morphology, structure, and optical properties of gallium nitride (GaN) nanowires grown using metal-organic chemical vapor deposition (MOCVD) on r-plane sapphire using gold and nickel seed particles were investigated. We found that different seed particles result in different growth rates and densities of structural defects in MOCVD-grown GaN nanowires. Ni-seeded GaN nanowires grow faster than Au-seeded ones, and they do not contain the basal plane stacking faults that are observed in Au-seeded GaN nanowires. We propose that stacking fault formation is related to the supersaturation and surface energies in different types of seed particles. Room temperature photoluminescence studies revealed a blue-shifted peak in Au-seeded GaN nanowires compared to the GaN near-bandgap emission. The blue-shifted peak evolves as a function of the growth time and originates from the nanowire base, likely due to strain and Al diffusion from the substrate. Our results demonstrate that seed particle composition has a direct impact on the growth, structure, and optical properties of GaN nanowires and reveal some general requirements for seed particle selection for the growth of compound semiconductor nanowires. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/23/28/285603 |