Loading…

In Vitro and In Vivo Evaluation of a Sulfenamide Prodrug of Basic Metformin

In the present study, a previously described sulfenamide prodrug of a basic antidiabetic drug, metformin, was evaluated further. This sulfenamide prodrug was designed to improve the permeability and consequently the oral absorption and bioavailability (F) of the highly water-soluble metformin. Bioac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2012-08, Vol.101 (8), p.2854-2860
Main Authors: Huttunen, Kristiina M., Leppänen, Jukka, Vepsäläinen, Jouko, Sirviö, Jouni, Laine, Krista, Rautio, Jarkko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a previously described sulfenamide prodrug of a basic antidiabetic drug, metformin, was evaluated further. This sulfenamide prodrug was designed to improve the permeability and consequently the oral absorption and bioavailability (F) of the highly water-soluble metformin. Bioactivation of the prodrug was mediated by reduced glutathione, but it has been reported that sulfenamide prodrugs can also be bioactivated by other endogenous thiols like cysteine, and free thiol-containing proteins. Consistent with earlier findings for a sulfenamide prodrug of a weakly acid drug, linezolid, the permeability studies indicated that the metformin prodrug was also prematurely bioactivated on the apical surface of the Caco-2 cell monolayer. Nevertheless, the bioavailability of metformin was increased by approximately 25% after oral administration of the prodrug in rats, most probably because of better oral absorption. This indicates that the sulfenamide prodrug approach may be used to improve the moderate oral bioavailability of metformin, which may help to decrease the uncomfortable gastrointestinal adverse effects associated with metformin therapy as the daily doses of metformin can be reduced. Furthermore, the present study confirms that the applicability of the sulfenamide prodrug approach can be successfully extended from weak NH acids to very basic guanide-type drugs. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association
ISSN:0022-3549
1520-6017
DOI:10.1002/jps.23221