Loading…

Role of orexin in the central regulation of glucose and energy homeostasis [Review]

Hypothalamic orexin neurons are known to regulate sleep/wake stability, feeding behavior, emotions, autonomic nerve activity, and whole-body energy metabolism. In addition, emerging evidence indicates that orexin contributes to central regulation of glucose homeostasis. Intriguingly, central adminis...

Full description

Saved in:
Bibliographic Details
Published in:ENDOCRINE JOURNAL 2012, Vol.59(5), pp.365-374
Main Authors: Tsuneki, Hiroshi, Wada, Tsutomu, Sasaoka, Toshiyasu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypothalamic orexin neurons are known to regulate sleep/wake stability, feeding behavior, emotions, autonomic nerve activity, and whole-body energy metabolism. In addition, emerging evidence indicates that orexin contributes to central regulation of glucose homeostasis. Intriguingly, central administration of orexin is reported to cause blood glucose-elevating effect or blood glucose-lowering effect in rodents, depending on the experimental conditions. Here we reviewed the recent reports regarding the mode and mechanism of actions of orexin on these two opposing effects, and discuss the functional significance for the maintenance of glucose homeostasis. The fact that orexin exhibits biphasic effects on autonomic nerve activity and lipolysis suggests that orexin dually regulates the glucose appearance. In fact, orexin neurons are activated not only depending on the demand for glucose but also according to a circadian rhythm in the suprachiasmatic nucleus. The excited orexin neurons appear to alter the sympathetic or parasympathetic outflow to the periphery, and modulate the glucose production and utilization. Furthermore, deficiency of orexin action, particularly reduction of orexin 2 receptor-signaling, disrupts the mechanism for protection against insulin resistance associated with aging or induced by chronic high fat feeding in mice. Taken together, hypothalamic orexin system may manage multiple tasks to coordinate the interconnection among the arousal, feeding, circadian, and glucose homeostasis pathways.
ISSN:0918-8959
1348-4540
DOI:10.1507/endocrj.EJ12-0030