Loading…

Photoelectrochemical studies on aqueous suspensions of 3-dodecyl 2-5 di-thionyl pyrrole/metal oxide photoactive interfaces

Colloidal ZnO, Fe2O3 and Cu2O solutions were used to explore photonic activities at metal oxides/organic semiconductors interfaces. Fluorescence spectroscopic and dynamic electrochemical techniques were performed on colloidal metal oxides articles modified with 3‐dodecyl 2–5 di‐thionyl pyrrole (3‐DO...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2011-12, Vol.43 (12), p.1527-1531
Main Author: Kasem, Kasem K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Colloidal ZnO, Fe2O3 and Cu2O solutions were used to explore photonic activities at metal oxides/organic semiconductors interfaces. Fluorescence spectroscopic and dynamic electrochemical techniques were performed on colloidal metal oxides articles modified with 3‐dodecyl 2–5 di‐thionyl pyrrole (3‐DODTh‐Py) to investigate the quantum absorbance efficiency at this inorganic/organic interface (IOI). The IOI assemblies were p‐n junction‐type interfaces, where 3‐DODTh‐Py) functions as electron donor. Results were interpreted using the optical and electrochemical parameters of the organic monomer such as IP (ionization potential), EA (electron affinity), and Eg (Energy band gap), and the barrier height at the IOI interface. One of the driving forces for great absorption at IOI was the great difference in electronegativity between inorganic and organic interface. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
1096-9918
DOI:10.1002/sia.3747