Loading…

Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems

Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2011-12, Vol.88 (12), p.1219-1237
Main Authors: Whiteley, J. P., Gillow, K., Tavener, S. J., Walter, A. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3
cites cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3
container_end_page 1237
container_issue 12
container_start_page 1219
container_title International journal for numerical methods in engineering
container_volume 88
creator Whiteley, J. P.
Gillow, K.
Tavener, S. J.
Walter, A. C.
description Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.3217
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022869955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022869955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgT-iN4E1n0jZNeynbnB_bRDYRvAlpmmJc2sycFt2_N2NjXnl1OLwPz-G8CF0SPCAYRzdNrQZxRNgR6hGcsxBHmB2jno_ykOYZOUVnAJ8YE0Jx3EOzsXPWBYXtmhIC2wSFsXIVTEQHEC6ULpUJwJqu1bbxeRVI262NKoO6M61ef2xASwjWzhZG1XCOTiphQF3sZx-93o2Xw_tw-jx5GN5OQ5lgzEIpRVxkichkpljBBMElY5SUBcGRZFWalHleidT_Q1WS0qIipKxSIv1GopKquI-ud15_-KtT0PJag1TGiEbZDrj3RFma55T-odJZAKcqvna6Fm7jIb5tjPvG-LYxj17trQKkMJUTjdRw4KOE5ThLI8-FO-5bG7X518fns_Heu-c1tOrnwAu34imLGeVv8wlPRo_Lp9H7C1_Ev7n5iTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022869955</pqid></control><display><type>article</type><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><source>Wiley</source><creator>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</creator><creatorcontrib>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</creatorcontrib><description>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3217</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algebra ; block Gauss-Seidel ; Blocking ; Differential equations ; error bound ; Errors ; Exact sciences and technology ; Functionals ; Iterative methods ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; multiphysics model ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use ; Solvers</subject><ispartof>International journal for numerical methods in engineering, 2011-12, Vol.88 (12), p.1219-1237</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</citedby><cites>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24790862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Whiteley, J. P.</creatorcontrib><creatorcontrib>Gillow, K.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Walter, A. C.</creatorcontrib><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Algebra</subject><subject>block Gauss-Seidel</subject><subject>Blocking</subject><subject>Differential equations</subject><subject>error bound</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Functionals</subject><subject>Iterative methods</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>multiphysics model</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Solvers</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgT-iN4E1n0jZNeynbnB_bRDYRvAlpmmJc2sycFt2_N2NjXnl1OLwPz-G8CF0SPCAYRzdNrQZxRNgR6hGcsxBHmB2jno_ykOYZOUVnAJ8YE0Jx3EOzsXPWBYXtmhIC2wSFsXIVTEQHEC6ULpUJwJqu1bbxeRVI262NKoO6M61ef2xASwjWzhZG1XCOTiphQF3sZx-93o2Xw_tw-jx5GN5OQ5lgzEIpRVxkichkpljBBMElY5SUBcGRZFWalHleidT_Q1WS0qIipKxSIv1GopKquI-ud15_-KtT0PJag1TGiEbZDrj3RFma55T-odJZAKcqvna6Fm7jIb5tjPvG-LYxj17trQKkMJUTjdRw4KOE5ThLI8-FO-5bG7X518fns_Heu-c1tOrnwAu34imLGeVv8wlPRo_Lp9H7C1_Ev7n5iTA</recordid><startdate>20111223</startdate><enddate>20111223</enddate><creator>Whiteley, J. P.</creator><creator>Gillow, K.</creator><creator>Tavener, S. J.</creator><creator>Walter, A. C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111223</creationdate><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><author>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>block Gauss-Seidel</topic><topic>Blocking</topic><topic>Differential equations</topic><topic>error bound</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Functionals</topic><topic>Iterative methods</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>multiphysics model</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiteley, J. P.</creatorcontrib><creatorcontrib>Gillow, K.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Walter, A. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiteley, J. P.</au><au>Gillow, K.</au><au>Tavener, S. J.</au><au>Walter, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-12-23</date><risdate>2011</risdate><volume>88</volume><issue>12</issue><spage>1219</spage><epage>1237</epage><pages>1219-1237</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.3217</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2011-12, Vol.88 (12), p.1219-1237
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1022869955
source Wiley
subjects Algebra
block Gauss-Seidel
Blocking
Differential equations
error bound
Errors
Exact sciences and technology
Functionals
Iterative methods
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
multiphysics model
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Solvers
title Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20bounds%20on%20block%20Gauss-Seidel%20solutions%20of%20coupled%20multiphysics%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Whiteley,%20J.%20P.&rft.date=2011-12-23&rft.volume=88&rft.issue=12&rft.spage=1219&rft.epage=1237&rft.pages=1219-1237&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3217&rft_dat=%3Cproquest_cross%3E1022869955%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022869955&rft_id=info:pmid/&rfr_iscdi=true