Loading…
Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems
Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution...
Saved in:
Published in: | International journal for numerical methods in engineering 2011-12, Vol.88 (12), p.1219-1237 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3 |
container_end_page | 1237 |
container_issue | 12 |
container_start_page | 1219 |
container_title | International journal for numerical methods in engineering |
container_volume | 88 |
creator | Whiteley, J. P. Gillow, K. Tavener, S. J. Walter, A. C. |
description | Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.3217 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022869955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022869955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgT-iN4E1n0jZNeynbnB_bRDYRvAlpmmJc2sycFt2_N2NjXnl1OLwPz-G8CF0SPCAYRzdNrQZxRNgR6hGcsxBHmB2jno_ykOYZOUVnAJ8YE0Jx3EOzsXPWBYXtmhIC2wSFsXIVTEQHEC6ULpUJwJqu1bbxeRVI262NKoO6M61ef2xASwjWzhZG1XCOTiphQF3sZx-93o2Xw_tw-jx5GN5OQ5lgzEIpRVxkichkpljBBMElY5SUBcGRZFWalHleidT_Q1WS0qIipKxSIv1GopKquI-ud15_-KtT0PJag1TGiEbZDrj3RFma55T-odJZAKcqvna6Fm7jIb5tjPvG-LYxj17trQKkMJUTjdRw4KOE5ThLI8-FO-5bG7X518fns_Heu-c1tOrnwAu34imLGeVv8wlPRo_Lp9H7C1_Ev7n5iTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022869955</pqid></control><display><type>article</type><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><source>Wiley</source><creator>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</creator><creatorcontrib>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</creatorcontrib><description>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3217</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algebra ; block Gauss-Seidel ; Blocking ; Differential equations ; error bound ; Errors ; Exact sciences and technology ; Functionals ; Iterative methods ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; multiphysics model ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use ; Solvers</subject><ispartof>International journal for numerical methods in engineering, 2011-12, Vol.88 (12), p.1219-1237</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</citedby><cites>FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24790862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Whiteley, J. P.</creatorcontrib><creatorcontrib>Gillow, K.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Walter, A. C.</creatorcontrib><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Algebra</subject><subject>block Gauss-Seidel</subject><subject>Blocking</subject><subject>Differential equations</subject><subject>error bound</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Functionals</subject><subject>Iterative methods</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>multiphysics model</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Solvers</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgT-iN4E1n0jZNeynbnB_bRDYRvAlpmmJc2sycFt2_N2NjXnl1OLwPz-G8CF0SPCAYRzdNrQZxRNgR6hGcsxBHmB2jno_ykOYZOUVnAJ8YE0Jx3EOzsXPWBYXtmhIC2wSFsXIVTEQHEC6ULpUJwJqu1bbxeRVI262NKoO6M61ef2xASwjWzhZG1XCOTiphQF3sZx-93o2Xw_tw-jx5GN5OQ5lgzEIpRVxkichkpljBBMElY5SUBcGRZFWalHleidT_Q1WS0qIipKxSIv1GopKquI-ud15_-KtT0PJag1TGiEbZDrj3RFma55T-odJZAKcqvna6Fm7jIb5tjPvG-LYxj17trQKkMJUTjdRw4KOE5ThLI8-FO-5bG7X518fns_Heu-c1tOrnwAu34imLGeVv8wlPRo_Lp9H7C1_Ev7n5iTA</recordid><startdate>20111223</startdate><enddate>20111223</enddate><creator>Whiteley, J. P.</creator><creator>Gillow, K.</creator><creator>Tavener, S. J.</creator><creator>Walter, A. C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111223</creationdate><title>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</title><author>Whiteley, J. P. ; Gillow, K. ; Tavener, S. J. ; Walter, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>block Gauss-Seidel</topic><topic>Blocking</topic><topic>Differential equations</topic><topic>error bound</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Functionals</topic><topic>Iterative methods</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>multiphysics model</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiteley, J. P.</creatorcontrib><creatorcontrib>Gillow, K.</creatorcontrib><creatorcontrib>Tavener, S. J.</creatorcontrib><creatorcontrib>Walter, A. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiteley, J. P.</au><au>Gillow, K.</au><au>Tavener, S. J.</au><au>Walter, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-12-23</date><risdate>2011</risdate><volume>88</volume><issue>12</issue><spage>1219</spage><epage>1237</epage><pages>1219-1237</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Mathematical models in many fields often consist of coupled sub‐models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub‐models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss–Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss–Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non‐linear coupled fluid‐temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss–Seidel iteration. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.3217</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2011-12, Vol.88 (12), p.1219-1237 |
issn | 0029-5981 1097-0207 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022869955 |
source | Wiley |
subjects | Algebra block Gauss-Seidel Blocking Differential equations error bound Errors Exact sciences and technology Functionals Iterative methods Linear and multilinear algebra, matrix theory Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) multiphysics model Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Solvers |
title | Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20bounds%20on%20block%20Gauss-Seidel%20solutions%20of%20coupled%20multiphysics%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Whiteley,%20J.%20P.&rft.date=2011-12-23&rft.volume=88&rft.issue=12&rft.spage=1219&rft.epage=1237&rft.pages=1219-1237&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3217&rft_dat=%3Cproquest_cross%3E1022869955%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-cca3b84a8c8e7b7a10d7751db102c7f64d99fa61005e465bf11df61c5e412d5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022869955&rft_id=info:pmid/&rfr_iscdi=true |