Loading…
Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes
This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm‐MC) hydrogels as potential delivery vehicle for the controlled‐extended release of ammonium sulfate (NH4)2SO4 and potassium phosphate (KH2PO4) fertilizers. PAAm‐MC hydrogels with different acrylamide (AAm) and MC co...
Saved in:
Published in: | Journal of applied polymer science 2012-02, Vol.123 (4), p.2291-2298 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm‐MC) hydrogels as potential delivery vehicle for the controlled‐extended release of ammonium sulfate (NH4)2SO4 and potassium phosphate (KH2PO4) fertilizers. PAAm‐MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH4)2SO4 and KH2PO4 loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH2PO4/g hydrogel and 58.0 mg (NH4)2SO4/g hydrogel) and desorption (54.9 mg KH2PO4/g hydrogel and 49.5 mg (NH4)2SO4/g hydrogel) properties were observed for 6.0% AAm–1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled‐extended release of fertilizers systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 |
---|---|
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.34742 |