Loading…

Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions

► Studies on the isothermal decomposition kinetics of Na2C2O4 in the range 783–803K by TG. ► Effect of aluminium dopant on the kinetics of thermal decomposition. ► Acceleratory and decay stages of the thermal decomposition follows different reaction models. ► Rate of decomposition is dependent on do...

Full description

Saved in:
Bibliographic Details
Published in:Thermochimica acta 2012-04, Vol.534, p.64-70
Main Authors: Jose John, M., Muraleedharan, K., Kannan, M.P., Abdul Mujeeb, V.M., Ganga Devi, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3
cites cdi_FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3
container_end_page 70
container_issue
container_start_page 64
container_title Thermochimica acta
container_volume 534
creator Jose John, M.
Muraleedharan, K.
Kannan, M.P.
Abdul Mujeeb, V.M.
Ganga Devi, T.
description ► Studies on the isothermal decomposition kinetics of Na2C2O4 in the range 783–803K by TG. ► Effect of aluminium dopant on the kinetics of thermal decomposition. ► Acceleratory and decay stages of the thermal decomposition follows different reaction models. ► Rate of decomposition is dependent on dopant concentration. ► Diffusion controlled mechanism is suggested for the thermal decomposition. The kinetics of thermal decomposition of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, aluminium, at five different temperatures in the range 783–803K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model fitting and model free kinetic methods of analysis. The model fitting analysis of the TG data shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by model fitting and model free kinetic methods for both stages of decomposition. As proposed earlier the results favours a diffusion controlled mechanism for the isothermal decomposition of sodium oxalate.
doi_str_mv 10.1016/j.tca.2012.02.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022882912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040603112000482</els_id><sourcerecordid>1022882912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3</originalsourceid><addsrcrecordid>eNp9kMFqFTEUhoMoeK0-gCuzEdzM9SSZSTK4klJtsdBFW3AXMskZzWVmck0yom9vxltdFk4IId__cfgJec1gz4DJ94d9cXbPgfE91AHxhOyYVrxRkn99SnYALTQSBHtOXuR8AKikhh05fAkLluBoLqsPmGlcaPmO20mznahHF-djzKGE-hNHaqd1DktYZ-rjET3N0W-P-MtOtiBdF4-Jhhz_CVxc_N9wfkmejXbK-OrhPiP3ny7uzi-b65vPV-cfrxsndFsaL1CqbvDoW8-BK8YGVP3QsX5AJiQbRilsa12ne2V5p6UfWGd9z0fZ9147cUbenbzHFH-smIuZQ3Y4TXbBuGbDgHOtec94RdkJdSnmnHA0xxRmm35XyGy9moOpvZqtVwN1QNTM2we9zc5OY7KLC_l_kHeqB6U295sTN9po7LdUmfvbKpJb97oVrBIfTgTWNn4GTCa7gItDHxK6YnwMj-zxB5fymIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022882912</pqid></control><display><type>article</type><title>Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jose John, M. ; Muraleedharan, K. ; Kannan, M.P. ; Abdul Mujeeb, V.M. ; Ganga Devi, T.</creator><creatorcontrib>Jose John, M. ; Muraleedharan, K. ; Kannan, M.P. ; Abdul Mujeeb, V.M. ; Ganga Devi, T.</creatorcontrib><description>► Studies on the isothermal decomposition kinetics of Na2C2O4 in the range 783–803K by TG. ► Effect of aluminium dopant on the kinetics of thermal decomposition. ► Acceleratory and decay stages of the thermal decomposition follows different reaction models. ► Rate of decomposition is dependent on dopant concentration. ► Diffusion controlled mechanism is suggested for the thermal decomposition. The kinetics of thermal decomposition of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, aluminium, at five different temperatures in the range 783–803K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model fitting and model free kinetic methods of analysis. The model fitting analysis of the TG data shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by model fitting and model free kinetic methods for both stages of decomposition. As proposed earlier the results favours a diffusion controlled mechanism for the isothermal decomposition of sodium oxalate.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2012.02.003</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>activation energy ; Aluminium doping ; Aluminum ; Chemical thermodynamics ; Chemistry ; Contracting cylinder equation ; Cylinders ; Decomposition ; Diffusion controlled mechanism ; Exact sciences and technology ; Fittings ; General and physical chemistry ; General. Theory ; Isothermal thermogravimetry ; Mathematical models ; Oxalates ; Prout–Tompkins equation ; Reaction kinetics ; Sodium ; Sodium oxalate ; temperature ; thermal degradation ; thermogravimetry</subject><ispartof>Thermochimica acta, 2012-04, Vol.534, p.64-70</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3</citedby><cites>FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25790772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jose John, M.</creatorcontrib><creatorcontrib>Muraleedharan, K.</creatorcontrib><creatorcontrib>Kannan, M.P.</creatorcontrib><creatorcontrib>Abdul Mujeeb, V.M.</creatorcontrib><creatorcontrib>Ganga Devi, T.</creatorcontrib><title>Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions</title><title>Thermochimica acta</title><description>► Studies on the isothermal decomposition kinetics of Na2C2O4 in the range 783–803K by TG. ► Effect of aluminium dopant on the kinetics of thermal decomposition. ► Acceleratory and decay stages of the thermal decomposition follows different reaction models. ► Rate of decomposition is dependent on dopant concentration. ► Diffusion controlled mechanism is suggested for the thermal decomposition. The kinetics of thermal decomposition of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, aluminium, at five different temperatures in the range 783–803K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model fitting and model free kinetic methods of analysis. The model fitting analysis of the TG data shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by model fitting and model free kinetic methods for both stages of decomposition. As proposed earlier the results favours a diffusion controlled mechanism for the isothermal decomposition of sodium oxalate.</description><subject>activation energy</subject><subject>Aluminium doping</subject><subject>Aluminum</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Contracting cylinder equation</subject><subject>Cylinders</subject><subject>Decomposition</subject><subject>Diffusion controlled mechanism</subject><subject>Exact sciences and technology</subject><subject>Fittings</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Isothermal thermogravimetry</subject><subject>Mathematical models</subject><subject>Oxalates</subject><subject>Prout–Tompkins equation</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>Sodium oxalate</subject><subject>temperature</subject><subject>thermal degradation</subject><subject>thermogravimetry</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqFTEUhoMoeK0-gCuzEdzM9SSZSTK4klJtsdBFW3AXMskZzWVmck0yom9vxltdFk4IId__cfgJec1gz4DJ94d9cXbPgfE91AHxhOyYVrxRkn99SnYALTQSBHtOXuR8AKikhh05fAkLluBoLqsPmGlcaPmO20mznahHF-djzKGE-hNHaqd1DktYZ-rjET3N0W-P-MtOtiBdF4-Jhhz_CVxc_N9wfkmejXbK-OrhPiP3ny7uzi-b65vPV-cfrxsndFsaL1CqbvDoW8-BK8YGVP3QsX5AJiQbRilsa12ne2V5p6UfWGd9z0fZ9147cUbenbzHFH-smIuZQ3Y4TXbBuGbDgHOtec94RdkJdSnmnHA0xxRmm35XyGy9moOpvZqtVwN1QNTM2we9zc5OY7KLC_l_kHeqB6U295sTN9po7LdUmfvbKpJb97oVrBIfTgTWNn4GTCa7gItDHxK6YnwMj-zxB5fymIo</recordid><startdate>20120420</startdate><enddate>20120420</enddate><creator>Jose John, M.</creator><creator>Muraleedharan, K.</creator><creator>Kannan, M.P.</creator><creator>Abdul Mujeeb, V.M.</creator><creator>Ganga Devi, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120420</creationdate><title>Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions</title><author>Jose John, M. ; Muraleedharan, K. ; Kannan, M.P. ; Abdul Mujeeb, V.M. ; Ganga Devi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>activation energy</topic><topic>Aluminium doping</topic><topic>Aluminum</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Contracting cylinder equation</topic><topic>Cylinders</topic><topic>Decomposition</topic><topic>Diffusion controlled mechanism</topic><topic>Exact sciences and technology</topic><topic>Fittings</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Isothermal thermogravimetry</topic><topic>Mathematical models</topic><topic>Oxalates</topic><topic>Prout–Tompkins equation</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>Sodium oxalate</topic><topic>temperature</topic><topic>thermal degradation</topic><topic>thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose John, M.</creatorcontrib><creatorcontrib>Muraleedharan, K.</creatorcontrib><creatorcontrib>Kannan, M.P.</creatorcontrib><creatorcontrib>Abdul Mujeeb, V.M.</creatorcontrib><creatorcontrib>Ganga Devi, T.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose John, M.</au><au>Muraleedharan, K.</au><au>Kannan, M.P.</au><au>Abdul Mujeeb, V.M.</au><au>Ganga Devi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions</atitle><jtitle>Thermochimica acta</jtitle><date>2012-04-20</date><risdate>2012</risdate><volume>534</volume><spage>64</spage><epage>70</epage><pages>64-70</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>► Studies on the isothermal decomposition kinetics of Na2C2O4 in the range 783–803K by TG. ► Effect of aluminium dopant on the kinetics of thermal decomposition. ► Acceleratory and decay stages of the thermal decomposition follows different reaction models. ► Rate of decomposition is dependent on dopant concentration. ► Diffusion controlled mechanism is suggested for the thermal decomposition. The kinetics of thermal decomposition of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, aluminium, at five different temperatures in the range 783–803K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model fitting and model free kinetic methods of analysis. The model fitting analysis of the TG data shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by model fitting and model free kinetic methods for both stages of decomposition. As proposed earlier the results favours a diffusion controlled mechanism for the isothermal decomposition of sodium oxalate.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2012.02.003</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6031
ispartof Thermochimica acta, 2012-04, Vol.534, p.64-70
issn 0040-6031
1872-762X
language eng
recordid cdi_proquest_miscellaneous_1022882912
source ScienceDirect Freedom Collection 2022-2024
subjects activation energy
Aluminium doping
Aluminum
Chemical thermodynamics
Chemistry
Contracting cylinder equation
Cylinders
Decomposition
Diffusion controlled mechanism
Exact sciences and technology
Fittings
General and physical chemistry
General. Theory
Isothermal thermogravimetry
Mathematical models
Oxalates
Prout–Tompkins equation
Reaction kinetics
Sodium
Sodium oxalate
temperature
thermal degradation
thermogravimetry
title Kinetic studies on the thermal decomposition of aluminium doped sodium oxalate under isothermal conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20studies%20on%20the%20thermal%20decomposition%20of%20aluminium%20doped%20sodium%20oxalate%20under%20isothermal%20conditions&rft.jtitle=Thermochimica%20acta&rft.au=Jose%20John,%20M.&rft.date=2012-04-20&rft.volume=534&rft.spage=64&rft.epage=70&rft.pages=64-70&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2012.02.003&rft_dat=%3Cproquest_cross%3E1022882912%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-d3e675bded4d202711be79b519be1361bf63a4ac5897a2586db15ad92f699d8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022882912&rft_id=info:pmid/&rfr_iscdi=true