Loading…

Design and Comparison of FFT VLSI Architectures for SoC Telecom Applications with Different Flexibility, Speed and Complexity Trade-Offs

The design of Fast Fourier Transform (FFT) integrated architectures for System-on-Chip (SoC) telecom applications is addressed in this paper. After reviewing the FFT processing requirements of wireless and wired Orthogonal Frequency Division Multiplexing (OFDM) standards, including the emerging Mult...

Full description

Saved in:
Bibliographic Details
Published in:Circuits, systems, and signal processing systems, and signal processing, 2012-04, Vol.31 (2), p.627-649
Main Authors: Saponara, Sergio, Rovini, Massimo, Fanucci, Luca, Karachalios, Athanasios, Lentaris, George, Reisis, Dionysios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design of Fast Fourier Transform (FFT) integrated architectures for System-on-Chip (SoC) telecom applications is addressed in this paper. After reviewing the FFT processing requirements of wireless and wired Orthogonal Frequency Division Multiplexing (OFDM) standards, including the emerging Multiple Input Multiple Output (MIMO) and OFDM Access (OFDMA) schemes, three FFT architectures are proposed: a fully parallel, a pipelined cascade and an in-place variable-size architecture, which offer different trade-offs among flexibility, processing speed and complexity. Silicon implementation results and comparisons with the state-of-the-art prove that each macrocell outperforms the known works for a target application. The fully parallel is optimized for throughput requirements up to several GSamples/s enabling Ultra-wideband (UWB) communications by using all channels foreseen in the standard. The pipelined cascade macrocell minimizes complexity for large size FFTs sustaining throughput up to 100 MSamples/s. The in-place variable-size FFT macrocell stands for its flexibility by allowing run-time reconfigurability required in OFDMA schemes while attaining the required throughput to support MIMO communications. The three architectures are also compared with common case-studies and target technology.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-011-9332-7