Loading…

Rewriting XPath queries using materialized XPath views

Let XP(/,//,[]) be the fragment of XPath 1.0, consisting of queries that involve only the child and descendant axes, and predicates without disjunction or negation (and no wildcard nodetests); these queries can be represented as tree patterns. We consider the problem of rewriting a query Q using a m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer and system sciences 2012-07, Vol.78 (4), p.1006-1025
Main Author: Ramanan, Prakash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283
cites cdi_FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283
container_end_page 1025
container_issue 4
container_start_page 1006
container_title Journal of computer and system sciences
container_volume 78
creator Ramanan, Prakash
description Let XP(/,//,[]) be the fragment of XPath 1.0, consisting of queries that involve only the child and descendant axes, and predicates without disjunction or negation (and no wildcard nodetests); these queries can be represented as tree patterns. We consider the problem of rewriting a query Q using a materialized view V, where Q,V∈XP(/,//,[]). We present more efficient algorithms for the following: (1) Determine if an equivalent rewriting of Q using V exists; find the smallest such rewriting, when it exists. A previously-known algorithm runs in O(|Q|2+|Q||V|) time. For the special case when Q is known to be minimal, we present an O(|Q||V|) algorithm. (2) Determine if a (nonempty) contained rewriting of Q using V exists. We present an O(|Q||V|) algorithm, compared to the previous O(|Q||V|2) algorithm. We also present a more efficient algorithm for finding a maximal such rewriting, when it exists. Then we extend this result to a subset of XP(/,//,[],⁎) that allows restricted occurrences of wildcard nodetests. ► Study the problem of rewriting an XPath query using a materialized XPath view. ► Characterize when an equivalent rewriting exists. ► Faster algorithm to determine if a maximal contained rewriting exists. ► Faster algorithm to find a compact representation of all contained rewritings. ► Study the relationship between homomorphisms and simulation.
doi_str_mv 10.1016/j.jcss.2011.12.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022883137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000011001462</els_id><sourcerecordid>1022883137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMoWFf_gKc9emnNJG3TghdZdBUWFFHwFtJ0qintds10XfTXm7J7di7DDN8b5j3GLoEnwCG_bpPWEiWCAyQgEs7hiEXASx4LJdJjFnEuRMxDnbIzojYAkOUyYvkL7rwb3fpj_v5sxs_51xa9Q5pvadr1Zgyj6dwv1gfg2-GOztlJYzrCi0Ofsbf7u9fFQ7x6Wj4ublexlUqNsUyzCtEqk5WpyECaiqcqzZWomjKtKllZI_O6yBGyRpSKCyMzqQq0sqmtFIWcsav93Y0fwmc06t6Rxa4zaxy2pCHYKgoJUgVU7FHrByKPjd541xv_EyA9haRbPYWkp5A0CB0yCKKbvQiDieDMa7IO1xZr59GOuh7cf_I_ZbtvRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022883137</pqid></control><display><type>article</type><title>Rewriting XPath queries using materialized XPath views</title><source>ScienceDirect Journals</source><creator>Ramanan, Prakash</creator><creatorcontrib>Ramanan, Prakash</creatorcontrib><description>Let XP(/,//,[]) be the fragment of XPath 1.0, consisting of queries that involve only the child and descendant axes, and predicates without disjunction or negation (and no wildcard nodetests); these queries can be represented as tree patterns. We consider the problem of rewriting a query Q using a materialized view V, where Q,V∈XP(/,//,[]). We present more efficient algorithms for the following: (1) Determine if an equivalent rewriting of Q using V exists; find the smallest such rewriting, when it exists. A previously-known algorithm runs in O(|Q|2+|Q||V|) time. For the special case when Q is known to be minimal, we present an O(|Q||V|) algorithm. (2) Determine if a (nonempty) contained rewriting of Q using V exists. We present an O(|Q||V|) algorithm, compared to the previous O(|Q||V|2) algorithm. We also present a more efficient algorithm for finding a maximal such rewriting, when it exists. Then we extend this result to a subset of XP(/,//,[],⁎) that allows restricted occurrences of wildcard nodetests. ► Study the problem of rewriting an XPath query using a materialized XPath view. ► Characterize when an equivalent rewriting exists. ► Faster algorithm to determine if a maximal contained rewriting exists. ► Faster algorithm to find a compact representation of all contained rewritings. ► Study the relationship between homomorphisms and simulation.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2011.12.001</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Equivalence ; Fragmentation ; Homomorphism ; Queries ; Query evaluation ; Rewriting ; Simulation ; Trees ; Views ; XML ; XPath</subject><ispartof>Journal of computer and system sciences, 2012-07, Vol.78 (4), p.1006-1025</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283</citedby><cites>FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramanan, Prakash</creatorcontrib><title>Rewriting XPath queries using materialized XPath views</title><title>Journal of computer and system sciences</title><description>Let XP(/,//,[]) be the fragment of XPath 1.0, consisting of queries that involve only the child and descendant axes, and predicates without disjunction or negation (and no wildcard nodetests); these queries can be represented as tree patterns. We consider the problem of rewriting a query Q using a materialized view V, where Q,V∈XP(/,//,[]). We present more efficient algorithms for the following: (1) Determine if an equivalent rewriting of Q using V exists; find the smallest such rewriting, when it exists. A previously-known algorithm runs in O(|Q|2+|Q||V|) time. For the special case when Q is known to be minimal, we present an O(|Q||V|) algorithm. (2) Determine if a (nonempty) contained rewriting of Q using V exists. We present an O(|Q||V|) algorithm, compared to the previous O(|Q||V|2) algorithm. We also present a more efficient algorithm for finding a maximal such rewriting, when it exists. Then we extend this result to a subset of XP(/,//,[],⁎) that allows restricted occurrences of wildcard nodetests. ► Study the problem of rewriting an XPath query using a materialized XPath view. ► Characterize when an equivalent rewriting exists. ► Faster algorithm to determine if a maximal contained rewriting exists. ► Faster algorithm to find a compact representation of all contained rewritings. ► Study the relationship between homomorphisms and simulation.</description><subject>Algorithms</subject><subject>Equivalence</subject><subject>Fragmentation</subject><subject>Homomorphism</subject><subject>Queries</subject><subject>Query evaluation</subject><subject>Rewriting</subject><subject>Simulation</subject><subject>Trees</subject><subject>Views</subject><subject>XML</subject><subject>XPath</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMoWFf_gKc9emnNJG3TghdZdBUWFFHwFtJ0qintds10XfTXm7J7di7DDN8b5j3GLoEnwCG_bpPWEiWCAyQgEs7hiEXASx4LJdJjFnEuRMxDnbIzojYAkOUyYvkL7rwb3fpj_v5sxs_51xa9Q5pvadr1Zgyj6dwv1gfg2-GOztlJYzrCi0Ofsbf7u9fFQ7x6Wj4ublexlUqNsUyzCtEqk5WpyECaiqcqzZWomjKtKllZI_O6yBGyRpSKCyMzqQq0sqmtFIWcsav93Y0fwmc06t6Rxa4zaxy2pCHYKgoJUgVU7FHrByKPjd541xv_EyA9haRbPYWkp5A0CB0yCKKbvQiDieDMa7IO1xZr59GOuh7cf_I_ZbtvRg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Ramanan, Prakash</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120701</creationdate><title>Rewriting XPath queries using materialized XPath views</title><author>Ramanan, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Equivalence</topic><topic>Fragmentation</topic><topic>Homomorphism</topic><topic>Queries</topic><topic>Query evaluation</topic><topic>Rewriting</topic><topic>Simulation</topic><topic>Trees</topic><topic>Views</topic><topic>XML</topic><topic>XPath</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanan, Prakash</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanan, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rewriting XPath queries using materialized XPath views</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>78</volume><issue>4</issue><spage>1006</spage><epage>1025</epage><pages>1006-1025</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>Let XP(/,//,[]) be the fragment of XPath 1.0, consisting of queries that involve only the child and descendant axes, and predicates without disjunction or negation (and no wildcard nodetests); these queries can be represented as tree patterns. We consider the problem of rewriting a query Q using a materialized view V, where Q,V∈XP(/,//,[]). We present more efficient algorithms for the following: (1) Determine if an equivalent rewriting of Q using V exists; find the smallest such rewriting, when it exists. A previously-known algorithm runs in O(|Q|2+|Q||V|) time. For the special case when Q is known to be minimal, we present an O(|Q||V|) algorithm. (2) Determine if a (nonempty) contained rewriting of Q using V exists. We present an O(|Q||V|) algorithm, compared to the previous O(|Q||V|2) algorithm. We also present a more efficient algorithm for finding a maximal such rewriting, when it exists. Then we extend this result to a subset of XP(/,//,[],⁎) that allows restricted occurrences of wildcard nodetests. ► Study the problem of rewriting an XPath query using a materialized XPath view. ► Characterize when an equivalent rewriting exists. ► Faster algorithm to determine if a maximal contained rewriting exists. ► Faster algorithm to find a compact representation of all contained rewritings. ► Study the relationship between homomorphisms and simulation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2011.12.001</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2012-07, Vol.78 (4), p.1006-1025
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_1022883137
source ScienceDirect Journals
subjects Algorithms
Equivalence
Fragmentation
Homomorphism
Queries
Query evaluation
Rewriting
Simulation
Trees
Views
XML
XPath
title Rewriting XPath queries using materialized XPath views
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rewriting%20XPath%20queries%20using%20materialized%20XPath%20views&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Ramanan,%20Prakash&rft.date=2012-07-01&rft.volume=78&rft.issue=4&rft.spage=1006&rft.epage=1025&rft.pages=1006-1025&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2011.12.001&rft_dat=%3Cproquest_cross%3E1022883137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-345beec7a5942513ab0474672bf94bb3bca36d86e15f29702a35378ec3fdc3283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022883137&rft_id=info:pmid/&rfr_iscdi=true