Loading…

A constitutive model for active–passive transition of muscle fibers

In this paper, we examine the transition of striated muscles between active and passive states. New experimental data of a muscle performing such a transition are provided, allowing for a new model to be developed to capture this mechanical behavior. Specifically, a strain energy function is formula...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2012-03, Vol.47 (2), p.377-387
Main Authors: Paetsch, C., Trimmer, B.A., Dorfmann, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443
cites cdi_FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443
container_end_page 387
container_issue 2
container_start_page 377
container_title International journal of non-linear mechanics
container_volume 47
creator Paetsch, C.
Trimmer, B.A.
Dorfmann, A.
description In this paper, we examine the transition of striated muscles between active and passive states. New experimental data of a muscle performing such a transition are provided, allowing for a new model to be developed to capture this mechanical behavior. Specifically, a strain energy function is formulated using the theory of transient networks, introducing an intermediate, stress-free configuration for the active muscle fibers. Additionally, energy dissipation occurring during the unloading is accounted for by specifying a pseudo-energy function. The general three-dimensional case is specialized to uniaxial deformation for comparison with test data, from which material parameters are determined. Finally, numerical results are presented, demonstrating the model's ability to capture the mechanical behavior with changing stimulus. ► New experimental data show the transition from the passive to the active state in a Manduca muscle under uniaxial extension. ► The data show that the active muscle, in the reference configuration, is no longer stress-free. ► The constitutive model accounts for multiple stress-free reference configurations, for the change in mechanical behavior under stimulus and for energy dissipation during unloading.
doi_str_mv 10.1016/j.ijnonlinmec.2011.09.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022887663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746211002320</els_id><sourcerecordid>1022887663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443</originalsourceid><addsrcrecordid>eNqNkM1KxDAURoMoOI6-Q925aU2aNGmWwzD-wIAbXYdMcgMZ2mRM2gF3voNv6JPYMi5curpw7_k-uAehW4Irggm_31d-H2LofOjBVDUmpMKywjU7QwvSirZsOG3P0QLjGpeC8foSXeW8x1OWYbFAm1VhYsiDH8bBH6Hoo4WucDEV2syL78-vg855Pg1Jh-wHH0MRXdGP2XRQOL-DlK_RhdNdhpvfuURvD5vX9VO5fXl8Xq-2palbNpQMuJRWagyMOqqpwdIyQ60AhxlthBGyaQQjTBjuwEpmd8I4KvGOW-CM0SW6O_UeUnwfIQ-q99lA1-kAccyK4LpuW8E5nVB5Qk2KOSdw6pB8r9PHBKlZndqrP-rUrE5hqSZ1U3Z9ysL0y9FDUtl4CAasT2AGZaP_R8sP5U5_ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022887663</pqid></control><display><type>article</type><title>A constitutive model for active–passive transition of muscle fibers</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Paetsch, C. ; Trimmer, B.A. ; Dorfmann, A.</creator><creatorcontrib>Paetsch, C. ; Trimmer, B.A. ; Dorfmann, A.</creatorcontrib><description>In this paper, we examine the transition of striated muscles between active and passive states. New experimental data of a muscle performing such a transition are provided, allowing for a new model to be developed to capture this mechanical behavior. Specifically, a strain energy function is formulated using the theory of transient networks, introducing an intermediate, stress-free configuration for the active muscle fibers. Additionally, energy dissipation occurring during the unloading is accounted for by specifying a pseudo-energy function. The general three-dimensional case is specialized to uniaxial deformation for comparison with test data, from which material parameters are determined. Finally, numerical results are presented, demonstrating the model's ability to capture the mechanical behavior with changing stimulus. ► New experimental data show the transition from the passive to the active state in a Manduca muscle under uniaxial extension. ► The data show that the active muscle, in the reference configuration, is no longer stress-free. ► The constitutive model accounts for multiple stress-free reference configurations, for the change in mechanical behavior under stimulus and for energy dissipation during unloading.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2011.09.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Active tension ; Energy of formation ; Energy use ; Fibers ; Finite deformations ; Mathematical analysis ; Mathematical models ; Muscles ; Phenomenological models ; Strain ; Three dimensional</subject><ispartof>International journal of non-linear mechanics, 2012-03, Vol.47 (2), p.377-387</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443</citedby><cites>FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746211002320$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3619,27905,27906,45993</link.rule.ids></links><search><creatorcontrib>Paetsch, C.</creatorcontrib><creatorcontrib>Trimmer, B.A.</creatorcontrib><creatorcontrib>Dorfmann, A.</creatorcontrib><title>A constitutive model for active–passive transition of muscle fibers</title><title>International journal of non-linear mechanics</title><description>In this paper, we examine the transition of striated muscles between active and passive states. New experimental data of a muscle performing such a transition are provided, allowing for a new model to be developed to capture this mechanical behavior. Specifically, a strain energy function is formulated using the theory of transient networks, introducing an intermediate, stress-free configuration for the active muscle fibers. Additionally, energy dissipation occurring during the unloading is accounted for by specifying a pseudo-energy function. The general three-dimensional case is specialized to uniaxial deformation for comparison with test data, from which material parameters are determined. Finally, numerical results are presented, demonstrating the model's ability to capture the mechanical behavior with changing stimulus. ► New experimental data show the transition from the passive to the active state in a Manduca muscle under uniaxial extension. ► The data show that the active muscle, in the reference configuration, is no longer stress-free. ► The constitutive model accounts for multiple stress-free reference configurations, for the change in mechanical behavior under stimulus and for energy dissipation during unloading.</description><subject>Active tension</subject><subject>Energy of formation</subject><subject>Energy use</subject><subject>Fibers</subject><subject>Finite deformations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Muscles</subject><subject>Phenomenological models</subject><subject>Strain</subject><subject>Three dimensional</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAURoMoOI6-Q925aU2aNGmWwzD-wIAbXYdMcgMZ2mRM2gF3voNv6JPYMi5curpw7_k-uAehW4Irggm_31d-H2LofOjBVDUmpMKywjU7QwvSirZsOG3P0QLjGpeC8foSXeW8x1OWYbFAm1VhYsiDH8bBH6Hoo4WucDEV2syL78-vg855Pg1Jh-wHH0MRXdGP2XRQOL-DlK_RhdNdhpvfuURvD5vX9VO5fXl8Xq-2palbNpQMuJRWagyMOqqpwdIyQ60AhxlthBGyaQQjTBjuwEpmd8I4KvGOW-CM0SW6O_UeUnwfIQ-q99lA1-kAccyK4LpuW8E5nVB5Qk2KOSdw6pB8r9PHBKlZndqrP-rUrE5hqSZ1U3Z9ysL0y9FDUtl4CAasT2AGZaP_R8sP5U5_ew</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Paetsch, C.</creator><creator>Trimmer, B.A.</creator><creator>Dorfmann, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201203</creationdate><title>A constitutive model for active–passive transition of muscle fibers</title><author>Paetsch, C. ; Trimmer, B.A. ; Dorfmann, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active tension</topic><topic>Energy of formation</topic><topic>Energy use</topic><topic>Fibers</topic><topic>Finite deformations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Muscles</topic><topic>Phenomenological models</topic><topic>Strain</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paetsch, C.</creatorcontrib><creatorcontrib>Trimmer, B.A.</creatorcontrib><creatorcontrib>Dorfmann, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paetsch, C.</au><au>Trimmer, B.A.</au><au>Dorfmann, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A constitutive model for active–passive transition of muscle fibers</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2012-03</date><risdate>2012</risdate><volume>47</volume><issue>2</issue><spage>377</spage><epage>387</epage><pages>377-387</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>In this paper, we examine the transition of striated muscles between active and passive states. New experimental data of a muscle performing such a transition are provided, allowing for a new model to be developed to capture this mechanical behavior. Specifically, a strain energy function is formulated using the theory of transient networks, introducing an intermediate, stress-free configuration for the active muscle fibers. Additionally, energy dissipation occurring during the unloading is accounted for by specifying a pseudo-energy function. The general three-dimensional case is specialized to uniaxial deformation for comparison with test data, from which material parameters are determined. Finally, numerical results are presented, demonstrating the model's ability to capture the mechanical behavior with changing stimulus. ► New experimental data show the transition from the passive to the active state in a Manduca muscle under uniaxial extension. ► The data show that the active muscle, in the reference configuration, is no longer stress-free. ► The constitutive model accounts for multiple stress-free reference configurations, for the change in mechanical behavior under stimulus and for energy dissipation during unloading.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2011.09.024</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2012-03, Vol.47 (2), p.377-387
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_1022887663
source ScienceDirect Freedom Collection; Backfile Package - Physics General (Legacy) [YPA]
subjects Active tension
Energy of formation
Energy use
Fibers
Finite deformations
Mathematical analysis
Mathematical models
Muscles
Phenomenological models
Strain
Three dimensional
title A constitutive model for active–passive transition of muscle fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20constitutive%20model%20for%20active%E2%80%93passive%20transition%20of%20muscle%20fibers&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Paetsch,%20C.&rft.date=2012-03&rft.volume=47&rft.issue=2&rft.spage=377&rft.epage=387&rft.pages=377-387&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2011.09.024&rft_dat=%3Cproquest_cross%3E1022887663%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-4e699d9a0e43f3a3c09d4c3d7ef04357c795574147c6fed94db7cf390b6de6443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022887663&rft_id=info:pmid/&rfr_iscdi=true