Loading…

A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps

In many instances, a climbing robot that utilizes dry adhesives as an attachment method may be found to be very useful due to the inherent nature of biomimetic fibrillar dry adhesives in the applications of space, security, surveillance and nuclear reactor cleaning and maintenance. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2011-11, Vol.20 (11), p.115021-1-11
Main Authors: KRAHN, J, LIU, Y, SADEGHI, A, MENON, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In many instances, a climbing robot that utilizes dry adhesives as an attachment method may be found to be very useful due to the inherent nature of biomimetic fibrillar dry adhesives in the applications of space, security, surveillance and nuclear reactor cleaning and maintenance. In this paper, a novel tank-like modular robot is developed that does not require a tail to provide a preload to the front of the robot while climbing. Biomimetic fibrillar dry adhesives with mushroom caps manufactured into belts are used as an attachment method. The manufacturing of the dry adhesive belts is discussed and the adhesion properties are examined. The timing belt based climbing platform (TBCP-II) utilizes two tank-like modules connected with an active joint with continual surface-robot distance measuring providing feedback for active adhesive preloading. The mechanical, electronic and software design is discussed. Reliable vertical surface climbing is achieved and the preloading strategy and response is examined. TBCP-II is shown to be capable of both horizontal to vertical and vertical to horizontal surface transfers over both inside and outside corners.
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/20/11/115021