Loading…

An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films

A determination of the steady state nucleation rate r n in thermally annealed a-Si:H has typically been performed using TEM, where the increase in grain density with isothermal sample anneal time can be directly observed for samples with small crystalline volume fractions. Using the classical model...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2011-05, Vol.519 (14), p.4455-4458
Main Authors: Mahan, A. Harv, Parilla, Phil A., Moutinho, Helio, To, Bobby, Dabney, Matthew S., Ginley, David S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3
cites cdi_FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3
container_end_page 4458
container_issue 14
container_start_page 4455
container_title Thin solid films
container_volume 519
creator Mahan, A. Harv
Parilla, Phil A.
Moutinho, Helio
To, Bobby
Dabney, Matthew S.
Ginley, David S.
description A determination of the steady state nucleation rate r n in thermally annealed a-Si:H has typically been performed using TEM, where the increase in grain density with isothermal sample anneal time can be directly observed for samples with small crystalline volume fractions. Using the classical model of crystallite nucleation and grain growth, this paper presents an alternative technique for determining r n using in situ XRD measurements of the crystallization time and EBSD measurements of the final grain size, the latter in fully annealed samples. HWCVD a-Si:H samples containing different as-grown film H contents C H have been examined by both techniques, and the agreement between these techniques is excellent. R n is seen to decrease with increasing as-grown film C H. Differences in the values of r n are suggested as being due to variations in the transition rate per atom at the amorphous/crystalline interface.
doi_str_mv 10.1016/j.tsf.2011.01.332
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022911999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060901100397X</els_id><sourcerecordid>1022911999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3</originalsourceid><addsrcrecordid>eNp9kEuLGzEQhEVIIM4mPyA3XQK5zKRbGsuj5LQ4Dy8s5JDXUchSDyuj0WwkecH_PjJectxT0cXX3VQx9hahR0D14dDXMvUCEHvAXkrxjK1w3OhObCQ-ZyuAAToFGl6yV6UcAACFkCsWrxO3sVJOtoYH4jPVu8XzunBPzZ1DIl7viJdK1p-a2Eo8HV2kxi-J5_Mc0pnJs43xxG1KZCN5vvuz_f2Z2-5H-LjjU4hzec1eTDYWevOoV-zX1y8_t7vu9vu3m-31befkuKndKO3kWihaeyUQlBoGvYc9DkqPIPdOSb8eFAmL0wSjRz8ObtNMNaq9hDXJK_b-cvc-L3-PVKqZQ3EUo020HItBEEIjaq0bihfU5aWUTJO5z2G2-dQgc27WHExr1pybNYCmNdt23j2et8XZOGWbXCj_F8UgtUSUjft04ahlfQiUTXGBkiMfMrlq_BKe-PIPJF6NWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022911999</pqid></control><display><type>article</type><title>An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films</title><source>ScienceDirect Freedom Collection</source><creator>Mahan, A. Harv ; Parilla, Phil A. ; Moutinho, Helio ; To, Bobby ; Dabney, Matthew S. ; Ginley, David S.</creator><creatorcontrib>Mahan, A. Harv ; Parilla, Phil A. ; Moutinho, Helio ; To, Bobby ; Dabney, Matthew S. ; Ginley, David S.</creatorcontrib><description>A determination of the steady state nucleation rate r n in thermally annealed a-Si:H has typically been performed using TEM, where the increase in grain density with isothermal sample anneal time can be directly observed for samples with small crystalline volume fractions. Using the classical model of crystallite nucleation and grain growth, this paper presents an alternative technique for determining r n using in situ XRD measurements of the crystallization time and EBSD measurements of the final grain size, the latter in fully annealed samples. HWCVD a-Si:H samples containing different as-grown film H contents C H have been examined by both techniques, and the agreement between these techniques is excellent. R n is seen to decrease with increasing as-grown film C H. Differences in the values of r n are suggested as being due to variations in the transition rate per atom at the amorphous/crystalline interface.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.01.332</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Annealing ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Crystallization ; Density ; Electron back scatter diffraction ; Exact sciences and technology ; Grain size ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Nucleation ; Nucleation rate ; Physics ; Steady state ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of film growth ; Thermal annealing ; Thin film structure and morphology</subject><ispartof>Thin solid films, 2011-05, Vol.519 (14), p.4455-4458</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3</citedby><cites>FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24393113$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahan, A. Harv</creatorcontrib><creatorcontrib>Parilla, Phil A.</creatorcontrib><creatorcontrib>Moutinho, Helio</creatorcontrib><creatorcontrib>To, Bobby</creatorcontrib><creatorcontrib>Dabney, Matthew S.</creatorcontrib><creatorcontrib>Ginley, David S.</creatorcontrib><title>An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films</title><title>Thin solid films</title><description>A determination of the steady state nucleation rate r n in thermally annealed a-Si:H has typically been performed using TEM, where the increase in grain density with isothermal sample anneal time can be directly observed for samples with small crystalline volume fractions. Using the classical model of crystallite nucleation and grain growth, this paper presents an alternative technique for determining r n using in situ XRD measurements of the crystallization time and EBSD measurements of the final grain size, the latter in fully annealed samples. HWCVD a-Si:H samples containing different as-grown film H contents C H have been examined by both techniques, and the agreement between these techniques is excellent. R n is seen to decrease with increasing as-grown film C H. Differences in the values of r n are suggested as being due to variations in the transition rate per atom at the amorphous/crystalline interface.</description><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Density</subject><subject>Electron back scatter diffraction</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nucleation</subject><subject>Nucleation rate</subject><subject>Physics</subject><subject>Steady state</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of film growth</subject><subject>Thermal annealing</subject><subject>Thin film structure and morphology</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEuLGzEQhEVIIM4mPyA3XQK5zKRbGsuj5LQ4Dy8s5JDXUchSDyuj0WwkecH_PjJectxT0cXX3VQx9hahR0D14dDXMvUCEHvAXkrxjK1w3OhObCQ-ZyuAAToFGl6yV6UcAACFkCsWrxO3sVJOtoYH4jPVu8XzunBPzZ1DIl7viJdK1p-a2Eo8HV2kxi-J5_Mc0pnJs43xxG1KZCN5vvuz_f2Z2-5H-LjjU4hzec1eTDYWevOoV-zX1y8_t7vu9vu3m-31befkuKndKO3kWihaeyUQlBoGvYc9DkqPIPdOSb8eFAmL0wSjRz8ObtNMNaq9hDXJK_b-cvc-L3-PVKqZQ3EUo020HItBEEIjaq0bihfU5aWUTJO5z2G2-dQgc27WHExr1pybNYCmNdt23j2et8XZOGWbXCj_F8UgtUSUjft04ahlfQiUTXGBkiMfMrlq_BKe-PIPJF6NWw</recordid><startdate>20110502</startdate><enddate>20110502</enddate><creator>Mahan, A. Harv</creator><creator>Parilla, Phil A.</creator><creator>Moutinho, Helio</creator><creator>To, Bobby</creator><creator>Dabney, Matthew S.</creator><creator>Ginley, David S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110502</creationdate><title>An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films</title><author>Mahan, A. Harv ; Parilla, Phil A. ; Moutinho, Helio ; To, Bobby ; Dabney, Matthew S. ; Ginley, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Density</topic><topic>Electron back scatter diffraction</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nucleation</topic><topic>Nucleation rate</topic><topic>Physics</topic><topic>Steady state</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of film growth</topic><topic>Thermal annealing</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahan, A. Harv</creatorcontrib><creatorcontrib>Parilla, Phil A.</creatorcontrib><creatorcontrib>Moutinho, Helio</creatorcontrib><creatorcontrib>To, Bobby</creatorcontrib><creatorcontrib>Dabney, Matthew S.</creatorcontrib><creatorcontrib>Ginley, David S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahan, A. Harv</au><au>Parilla, Phil A.</au><au>Moutinho, Helio</au><au>To, Bobby</au><au>Dabney, Matthew S.</au><au>Ginley, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films</atitle><jtitle>Thin solid films</jtitle><date>2011-05-02</date><risdate>2011</risdate><volume>519</volume><issue>14</issue><spage>4455</spage><epage>4458</epage><pages>4455-4458</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>A determination of the steady state nucleation rate r n in thermally annealed a-Si:H has typically been performed using TEM, where the increase in grain density with isothermal sample anneal time can be directly observed for samples with small crystalline volume fractions. Using the classical model of crystallite nucleation and grain growth, this paper presents an alternative technique for determining r n using in situ XRD measurements of the crystallization time and EBSD measurements of the final grain size, the latter in fully annealed samples. HWCVD a-Si:H samples containing different as-grown film H contents C H have been examined by both techniques, and the agreement between these techniques is excellent. R n is seen to decrease with increasing as-grown film C H. Differences in the values of r n are suggested as being due to variations in the transition rate per atom at the amorphous/crystalline interface.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2011.01.332</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2011-05, Vol.519 (14), p.4455-4458
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1022911999
source ScienceDirect Freedom Collection
subjects Amorphous silicon
Annealing
Chemical vapor deposition
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystal structure
Crystallization
Density
Electron back scatter diffraction
Exact sciences and technology
Grain size
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Nucleation
Nucleation rate
Physics
Steady state
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of film growth
Thermal annealing
Thin film structure and morphology
title An alternative method to determine the steady state nucleation rate in thermally annealed HWCVD a-Si:H films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20method%20to%20determine%20the%20steady%20state%20nucleation%20rate%20in%20thermally%20annealed%20HWCVD%20a-Si:H%20films&rft.jtitle=Thin%20solid%20films&rft.au=Mahan,%20A.%20Harv&rft.date=2011-05-02&rft.volume=519&rft.issue=14&rft.spage=4455&rft.epage=4458&rft.pages=4455-4458&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.01.332&rft_dat=%3Cproquest_cross%3E1022911999%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-83afc016e5d621066449b0b1469803bc63d546e2a1ff08d1d84c763d686b305e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022911999&rft_id=info:pmid/&rfr_iscdi=true