Loading…
Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials
This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange function...
Saved in:
Published in: | Nonlinear analysis 2012-06, Vol.75 (10), p.4068-4078 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3 |
container_end_page | 4078 |
container_issue | 10 |
container_start_page | 4068 |
container_title | Nonlinear analysis |
container_volume | 75 |
creator | Carrião, Paulo C. Cunha, Patrícia L. Miyagaki, Olímpio H. |
description | This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique. |
doi_str_mv | 10.1016/j.na.2012.02.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022912245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X12000831</els_id><sourcerecordid>1022912245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhC0EEiHQU7qkueCf-wsdQhAQQVCARGcce00cXc7B9iWk4x14Q54En0KLNNJs8c1qdxA6pWRECS3PF6NWjhihbER68T00oHXFs4LRYh8NCC9ZVuTl6yE6CmFBCKEVLwfo7ckFG-0a8Lt3XatxiDICDq7ponVtwMZ5HOeAlU-Ykg2-b8C2P1_fE-e164cH-bmBpsFhGyIs8cbGOV65CG20sgnH6MAkg5M_H6KXm-vnq9ts-ji5u7qcZoqzKmZcFjOeM5AwA05KY1hRMppzWVda6tJQUuvaFKAVcFPPSlnJfGx0-qJiaqw0H6Kz3d6Vdx8dhCiWNqh0l2zBdUFQwtiYMpYXCSU7VHkXggcjVt4upd8mSPRlioVopejLFKQXT5GLXQTSC2sLXgRloVWgrQcVhXb2__AvGVOAXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022912245</pqid></control><display><type>article</type><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><source>Elsevier SD Backfile Mathematics</source><source>Elsevier</source><creator>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</creator><creatorcontrib>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</creatorcontrib><description>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2012.02.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Critical growth ; Ground state ; Ground state solutions ; Manifolds ; Minimization ; Nonlinearity ; Optimization ; Variational methods</subject><ispartof>Nonlinear analysis, 2012-06, Vol.75 (10), p.4068-4078</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</citedby><cites>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X12000831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Carrião, Paulo C.</creatorcontrib><creatorcontrib>Cunha, Patrícia L.</creatorcontrib><creatorcontrib>Miyagaki, Olímpio H.</creatorcontrib><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><title>Nonlinear analysis</title><description>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</description><subject>Critical growth</subject><subject>Ground state</subject><subject>Ground state solutions</subject><subject>Manifolds</subject><subject>Minimization</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Variational methods</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhC0EEiHQU7qkueCf-wsdQhAQQVCARGcce00cXc7B9iWk4x14Q54En0KLNNJs8c1qdxA6pWRECS3PF6NWjhihbER68T00oHXFs4LRYh8NCC9ZVuTl6yE6CmFBCKEVLwfo7ckFG-0a8Lt3XatxiDICDq7ponVtwMZ5HOeAlU-Ykg2-b8C2P1_fE-e164cH-bmBpsFhGyIs8cbGOV65CG20sgnH6MAkg5M_H6KXm-vnq9ts-ji5u7qcZoqzKmZcFjOeM5AwA05KY1hRMppzWVda6tJQUuvaFKAVcFPPSlnJfGx0-qJiaqw0H6Kz3d6Vdx8dhCiWNqh0l2zBdUFQwtiYMpYXCSU7VHkXggcjVt4upd8mSPRlioVopejLFKQXT5GLXQTSC2sLXgRloVWgrQcVhXb2__AvGVOAXg</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Carrião, Paulo C.</creator><creator>Cunha, Patrícia L.</creator><creator>Miyagaki, Olímpio H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201206</creationdate><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><author>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Critical growth</topic><topic>Ground state</topic><topic>Ground state solutions</topic><topic>Manifolds</topic><topic>Minimization</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrião, Paulo C.</creatorcontrib><creatorcontrib>Cunha, Patrícia L.</creatorcontrib><creatorcontrib>Miyagaki, Olímpio H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrião, Paulo C.</au><au>Cunha, Patrícia L.</au><au>Miyagaki, Olímpio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-06</date><risdate>2012</risdate><volume>75</volume><issue>10</issue><spage>4068</spage><epage>4078</epage><pages>4068-4078</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2012.02.023</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2012-06, Vol.75 (10), p.4068-4078 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022912245 |
source | Elsevier SD Backfile Mathematics; Elsevier |
subjects | Critical growth Ground state Ground state solutions Manifolds Minimization Nonlinearity Optimization Variational methods |
title | Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20ground%20state%20solutions%20for%20the%20critical%20Klein%E2%80%93Gordon%E2%80%93Maxwell%20system%20with%20potentials&rft.jtitle=Nonlinear%20analysis&rft.au=Carri%C3%A3o,%20Paulo%20C.&rft.date=2012-06&rft.volume=75&rft.issue=10&rft.spage=4068&rft.epage=4078&rft.pages=4068-4078&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2012.02.023&rft_dat=%3Cproquest_cross%3E1022912245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022912245&rft_id=info:pmid/&rfr_iscdi=true |