Loading…

Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials

This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange function...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2012-06, Vol.75 (10), p.4068-4078
Main Authors: Carrião, Paulo C., Cunha, Patrícia L., Miyagaki, Olímpio H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3
cites cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3
container_end_page 4078
container_issue 10
container_start_page 4068
container_title Nonlinear analysis
container_volume 75
creator Carrião, Paulo C.
Cunha, Patrícia L.
Miyagaki, Olímpio H.
description This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.
doi_str_mv 10.1016/j.na.2012.02.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022912245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X12000831</els_id><sourcerecordid>1022912245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</originalsourceid><addsrcrecordid>eNp1kL1OAzEQhC0EEiHQU7qkueCf-wsdQhAQQVCARGcce00cXc7B9iWk4x14Q54En0KLNNJs8c1qdxA6pWRECS3PF6NWjhihbER68T00oHXFs4LRYh8NCC9ZVuTl6yE6CmFBCKEVLwfo7ckFG-0a8Lt3XatxiDICDq7ponVtwMZ5HOeAlU-Ykg2-b8C2P1_fE-e164cH-bmBpsFhGyIs8cbGOV65CG20sgnH6MAkg5M_H6KXm-vnq9ts-ji5u7qcZoqzKmZcFjOeM5AwA05KY1hRMppzWVda6tJQUuvaFKAVcFPPSlnJfGx0-qJiaqw0H6Kz3d6Vdx8dhCiWNqh0l2zBdUFQwtiYMpYXCSU7VHkXggcjVt4upd8mSPRlioVopejLFKQXT5GLXQTSC2sLXgRloVWgrQcVhXb2__AvGVOAXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022912245</pqid></control><display><type>article</type><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><source>Elsevier SD Backfile Mathematics</source><source>Elsevier</source><creator>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</creator><creatorcontrib>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</creatorcontrib><description>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2012.02.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Critical growth ; Ground state ; Ground state solutions ; Manifolds ; Minimization ; Nonlinearity ; Optimization ; Variational methods</subject><ispartof>Nonlinear analysis, 2012-06, Vol.75 (10), p.4068-4078</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</citedby><cites>FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X12000831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Carrião, Paulo C.</creatorcontrib><creatorcontrib>Cunha, Patrícia L.</creatorcontrib><creatorcontrib>Miyagaki, Olímpio H.</creatorcontrib><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><title>Nonlinear analysis</title><description>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</description><subject>Critical growth</subject><subject>Ground state</subject><subject>Ground state solutions</subject><subject>Manifolds</subject><subject>Minimization</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Variational methods</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OAzEQhC0EEiHQU7qkueCf-wsdQhAQQVCARGcce00cXc7B9iWk4x14Q54En0KLNNJs8c1qdxA6pWRECS3PF6NWjhihbER68T00oHXFs4LRYh8NCC9ZVuTl6yE6CmFBCKEVLwfo7ckFG-0a8Lt3XatxiDICDq7ponVtwMZ5HOeAlU-Ykg2-b8C2P1_fE-e164cH-bmBpsFhGyIs8cbGOV65CG20sgnH6MAkg5M_H6KXm-vnq9ts-ji5u7qcZoqzKmZcFjOeM5AwA05KY1hRMppzWVda6tJQUuvaFKAVcFPPSlnJfGx0-qJiaqw0H6Kz3d6Vdx8dhCiWNqh0l2zBdUFQwtiYMpYXCSU7VHkXggcjVt4upd8mSPRlioVopejLFKQXT5GLXQTSC2sLXgRloVWgrQcVhXb2__AvGVOAXg</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Carrião, Paulo C.</creator><creator>Cunha, Patrícia L.</creator><creator>Miyagaki, Olímpio H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201206</creationdate><title>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</title><author>Carrião, Paulo C. ; Cunha, Patrícia L. ; Miyagaki, Olímpio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Critical growth</topic><topic>Ground state</topic><topic>Ground state solutions</topic><topic>Manifolds</topic><topic>Minimization</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrião, Paulo C.</creatorcontrib><creatorcontrib>Cunha, Patrícia L.</creatorcontrib><creatorcontrib>Miyagaki, Olímpio H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrião, Paulo C.</au><au>Cunha, Patrícia L.</au><au>Miyagaki, Olímpio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-06</date><risdate>2012</risdate><volume>75</volume><issue>10</issue><spage>4068</spage><epage>4078</epage><pages>4068-4078</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This paper deals with the Klein–Gordon–Maxwell system when the nonlinearity exhibits critical growth. We prove the existence of positive ground state solutions for this system when a periodic potential V is introduced. The method combines the minimization of the corresponding Euler–Lagrange functional on the Nehari manifold with the Brézis and Nirenberg technique.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2012.02.023</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2012-06, Vol.75 (10), p.4068-4078
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1022912245
source Elsevier SD Backfile Mathematics; Elsevier
subjects Critical growth
Ground state
Ground state solutions
Manifolds
Minimization
Nonlinearity
Optimization
Variational methods
title Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20ground%20state%20solutions%20for%20the%20critical%20Klein%E2%80%93Gordon%E2%80%93Maxwell%20system%20with%20potentials&rft.jtitle=Nonlinear%20analysis&rft.au=Carri%C3%A3o,%20Paulo%20C.&rft.date=2012-06&rft.volume=75&rft.issue=10&rft.spage=4068&rft.epage=4078&rft.pages=4068-4078&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2012.02.023&rft_dat=%3Cproquest_cross%3E1022912245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3a5b342eaebe306ff2562143a87dad6f108d8f5edce3f8b6a7a49fd01772c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022912245&rft_id=info:pmid/&rfr_iscdi=true