Loading…

Fiber-optic, cantilever-type acoustic motion velocity hydrophone

The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the freq...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2012-07, Vol.132 (1), p.103-114
Main Authors: CRANCH, G. A, MILLER, G. A, KIRKENDALL, C. K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293
cites cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293
container_end_page 114
container_issue 1
container_start_page 103
container_title The Journal of the Acoustical Society of America
container_volume 132
creator CRANCH, G. A
MILLER, G. A
KIRKENDALL, C. K
description The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.
doi_str_mv 10.1121/1.4725764
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024645436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024645436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgiruuHvwD0ougYNd8TNLmpiyuCgte9FzSNGUjbVOT7kL_vZGtyhyGSR6G4UXokuAlIZTckyVklGcCjtCccIrTnFM4RnOMMUlBCjFDZyF8xpHnTJ6iGaVZJoHLOXpY29L41PWD1XeJVt1gG7OPL8PYm0RptwvxJ2ndYF2X7E3jtB3GZDtW3vVb15lzdFKrJpiLqS_Qx_rpffWSbt6eX1ePm1QzwocUiMGa8VwD1hzqjFZYcGpKQbXGUlHFoay4qUATFksYbJQsmZAYKgZUsgW6OeztvfvamTAUrQ3aNI3qTDyyIJiCAA5MRHp7oNq7ELypi97bVvkxouInsIIUU2DRXk1rd2Vrqj_5m1AE1xNQQaum9qrTNvw7QWhOGLBvfdBxHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024645436</pqid></control><display><type>article</type><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</creator><creatorcontrib>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</creatorcontrib><description>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4725764</identifier><identifier>PMID: 22779459</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Underwater sound</subject><ispartof>The Journal of the Acoustical Society of America, 2012-07, Vol.132 (1), p.103-114</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</citedby><cites>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26128134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22779459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CRANCH, G. A</creatorcontrib><creatorcontrib>MILLER, G. A</creatorcontrib><creatorcontrib>KIRKENDALL, C. K</creatorcontrib><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Underwater sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgiruuHvwD0ougYNd8TNLmpiyuCgte9FzSNGUjbVOT7kL_vZGtyhyGSR6G4UXokuAlIZTckyVklGcCjtCccIrTnFM4RnOMMUlBCjFDZyF8xpHnTJ6iGaVZJoHLOXpY29L41PWD1XeJVt1gG7OPL8PYm0RptwvxJ2ndYF2X7E3jtB3GZDtW3vVb15lzdFKrJpiLqS_Qx_rpffWSbt6eX1ePm1QzwocUiMGa8VwD1hzqjFZYcGpKQbXGUlHFoay4qUATFksYbJQsmZAYKgZUsgW6OeztvfvamTAUrQ3aNI3qTDyyIJiCAA5MRHp7oNq7ELypi97bVvkxouInsIIUU2DRXk1rd2Vrqj_5m1AE1xNQQaum9qrTNvw7QWhOGLBvfdBxHA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>CRANCH, G. A</creator><creator>MILLER, G. A</creator><creator>KIRKENDALL, C. K</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><author>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CRANCH, G. A</creatorcontrib><creatorcontrib>MILLER, G. A</creatorcontrib><creatorcontrib>KIRKENDALL, C. K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CRANCH, G. A</au><au>MILLER, G. A</au><au>KIRKENDALL, C. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>132</volume><issue>1</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>22779459</pmid><doi>10.1121/1.4725764</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2012-07, Vol.132 (1), p.103-114
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_1024645436
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Underwater sound
title Fiber-optic, cantilever-type acoustic motion velocity hydrophone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-optic,%20cantilever-type%20acoustic%20motion%20velocity%20hydrophone&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=CRANCH,%20G.%20A&rft.date=2012-07-01&rft.volume=132&rft.issue=1&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4725764&rft_dat=%3Cproquest_cross%3E1024645436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1024645436&rft_id=info:pmid/22779459&rfr_iscdi=true