Loading…
Fiber-optic, cantilever-type acoustic motion velocity hydrophone
The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the freq...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2012-07, Vol.132 (1), p.103-114 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293 |
container_end_page | 114 |
container_issue | 1 |
container_start_page | 103 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 132 |
creator | CRANCH, G. A MILLER, G. A KIRKENDALL, C. K |
description | The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise. |
doi_str_mv | 10.1121/1.4725764 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1024645436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024645436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgiruuHvwD0ougYNd8TNLmpiyuCgte9FzSNGUjbVOT7kL_vZGtyhyGSR6G4UXokuAlIZTckyVklGcCjtCccIrTnFM4RnOMMUlBCjFDZyF8xpHnTJ6iGaVZJoHLOXpY29L41PWD1XeJVt1gG7OPL8PYm0RptwvxJ2ndYF2X7E3jtB3GZDtW3vVb15lzdFKrJpiLqS_Qx_rpffWSbt6eX1ePm1QzwocUiMGa8VwD1hzqjFZYcGpKQbXGUlHFoay4qUATFksYbJQsmZAYKgZUsgW6OeztvfvamTAUrQ3aNI3qTDyyIJiCAA5MRHp7oNq7ELypi97bVvkxouInsIIUU2DRXk1rd2Vrqj_5m1AE1xNQQaum9qrTNvw7QWhOGLBvfdBxHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024645436</pqid></control><display><type>article</type><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</creator><creatorcontrib>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</creatorcontrib><description>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4725764</identifier><identifier>PMID: 22779459</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Underwater sound</subject><ispartof>The Journal of the Acoustical Society of America, 2012-07, Vol.132 (1), p.103-114</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</citedby><cites>FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26128134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22779459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CRANCH, G. A</creatorcontrib><creatorcontrib>MILLER, G. A</creatorcontrib><creatorcontrib>KIRKENDALL, C. K</creatorcontrib><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Underwater sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgiruuHvwD0ougYNd8TNLmpiyuCgte9FzSNGUjbVOT7kL_vZGtyhyGSR6G4UXokuAlIZTckyVklGcCjtCccIrTnFM4RnOMMUlBCjFDZyF8xpHnTJ6iGaVZJoHLOXpY29L41PWD1XeJVt1gG7OPL8PYm0RptwvxJ2ndYF2X7E3jtB3GZDtW3vVb15lzdFKrJpiLqS_Qx_rpffWSbt6eX1ePm1QzwocUiMGa8VwD1hzqjFZYcGpKQbXGUlHFoay4qUATFksYbJQsmZAYKgZUsgW6OeztvfvamTAUrQ3aNI3qTDyyIJiCAA5MRHp7oNq7ELypi97bVvkxouInsIIUU2DRXk1rd2Vrqj_5m1AE1xNQQaum9qrTNvw7QWhOGLBvfdBxHA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>CRANCH, G. A</creator><creator>MILLER, G. A</creator><creator>KIRKENDALL, C. K</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</title><author>CRANCH, G. A ; MILLER, G. A ; KIRKENDALL, C. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CRANCH, G. A</creatorcontrib><creatorcontrib>MILLER, G. A</creatorcontrib><creatorcontrib>KIRKENDALL, C. K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CRANCH, G. A</au><au>MILLER, G. A</au><au>KIRKENDALL, C. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-optic, cantilever-type acoustic motion velocity hydrophone</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>132</volume><issue>1</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>22779459</pmid><doi>10.1121/1.4725764</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2012-07, Vol.132 (1), p.103-114 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_1024645436 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Underwater sound |
title | Fiber-optic, cantilever-type acoustic motion velocity hydrophone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-optic,%20cantilever-type%20acoustic%20motion%20velocity%20hydrophone&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=CRANCH,%20G.%20A&rft.date=2012-07-01&rft.volume=132&rft.issue=1&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4725764&rft_dat=%3Cproquest_cross%3E1024645436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-41e0c358c40c54f72d0652eb62cc09a2a54bd5ed4c131316e0ea9b36904d34293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1024645436&rft_id=info:pmid/22779459&rfr_iscdi=true |