Loading…

A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification

Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammogr...

Full description

Saved in:
Bibliographic Details
Published in:Breast (Edinburgh) 2012-08, Vol.21 (4), p.503-506
Main Authors: Ciatto, Stefano, Bernardi, Daniela, Calabrese, Massimo, Durando, Manuela, Gentilini, Maria Adalgisa, Mariscotti, Giovanna, Monetti, Francesco, Moriconi, Enrica, Pesce, Barbara, Roselli, Antonella, Stevanin, Carmen, Tapparelli, Margherita, Houssami, Nehmat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863
cites cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863
container_end_page 506
container_issue 4
container_start_page 503
container_title Breast (Edinburgh)
container_volume 21
creator Ciatto, Stefano
Bernardi, Daniela
Calabrese, Massimo
Durando, Manuela
Gentilini, Maria Adalgisa
Mariscotti, Giovanna
Monetti, Francesco
Moriconi, Enrica
Pesce, Barbara
Roselli, Antonella
Stevanin, Carmen
Tapparelli, Margherita
Houssami, Nehmat
description Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.
doi_str_mv 10.1016/j.breast.2012.01.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1026689125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960977612000070</els_id><sourcerecordid>1026689125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCP0DIRy4JY2djOxekVVWgUgUC2rPl2BPkJRsvtrNo_z2OUjhw4eSR_N4bzfcIecWgZsDE233dRzQp1xwYr4HVAO0TsmFtw6sGFDwlG-gEVJ2U4oJcprQHgK4R6jm54JyrtlFyQ-YdHXxMmeLJjLPJPkw0DHSNptE4H8bw3VszUodT8vlMTUqY0gGnTPsz_fKw-3T_dUdTGPIvE7F8UxsOxzI6mgM9-TQXsx2LzQ8laFnxgjwbzJjw5eN7RR7e39xff6zuPn-4vd7dVbblXa4aIyXYwbStGbDrXctcZ-wAslVyK7eqF045zrhi0G-VLJdb1zHsjEAQXInmirxZc48x_JwxZX3wyeI4mgnDnDQDLoTqGG-LdLtKbQwpRRz0MfqDieci0gtwvdcrFb0A18B0AV5srx83zP0B3V_TH8JF8G4VYLnz5DHqZD1OFp2PaLN2wf9vw78BdvTT0sgPPGPahzlOhaFmOhWP_raUvnTOeOkbJDS_AavdqYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026689125</pqid></control><display><type>article</type><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</creator><creatorcontrib>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</creatorcontrib><description>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</description><identifier>ISSN: 0960-9776</identifier><identifier>EISSN: 1532-3080</identifier><identifier>DOI: 10.1016/j.breast.2012.01.005</identifier><identifier>PMID: 22285387</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Breast Neoplasms - diagnostic imaging ; Computer assessment ; Female ; Hematology, Oncology and Palliative Medicine ; Humans ; Mammography ; Mammography - methods ; Middle Aged ; Observer Variation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiological density ; Reproducibility of Results ; Software</subject><ispartof>Breast (Edinburgh), 2012-08, Vol.21 (4), p.503-506</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</citedby><cites>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22285387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciatto, Stefano</creatorcontrib><creatorcontrib>Bernardi, Daniela</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Durando, Manuela</creatorcontrib><creatorcontrib>Gentilini, Maria Adalgisa</creatorcontrib><creatorcontrib>Mariscotti, Giovanna</creatorcontrib><creatorcontrib>Monetti, Francesco</creatorcontrib><creatorcontrib>Moriconi, Enrica</creatorcontrib><creatorcontrib>Pesce, Barbara</creatorcontrib><creatorcontrib>Roselli, Antonella</creatorcontrib><creatorcontrib>Stevanin, Carmen</creatorcontrib><creatorcontrib>Tapparelli, Margherita</creatorcontrib><creatorcontrib>Houssami, Nehmat</creatorcontrib><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><title>Breast (Edinburgh)</title><addtitle>Breast</addtitle><description>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Computer assessment</subject><subject>Female</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Middle Aged</subject><subject>Observer Variation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiological density</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>0960-9776</issn><issn>1532-3080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EotvCP0DIRy4JY2djOxekVVWgUgUC2rPl2BPkJRsvtrNo_z2OUjhw4eSR_N4bzfcIecWgZsDE233dRzQp1xwYr4HVAO0TsmFtw6sGFDwlG-gEVJ2U4oJcprQHgK4R6jm54JyrtlFyQ-YdHXxMmeLJjLPJPkw0DHSNptE4H8bw3VszUodT8vlMTUqY0gGnTPsz_fKw-3T_dUdTGPIvE7F8UxsOxzI6mgM9-TQXsx2LzQ8laFnxgjwbzJjw5eN7RR7e39xff6zuPn-4vd7dVbblXa4aIyXYwbStGbDrXctcZ-wAslVyK7eqF045zrhi0G-VLJdb1zHsjEAQXInmirxZc48x_JwxZX3wyeI4mgnDnDQDLoTqGG-LdLtKbQwpRRz0MfqDieci0gtwvdcrFb0A18B0AV5srx83zP0B3V_TH8JF8G4VYLnz5DHqZD1OFp2PaLN2wf9vw78BdvTT0sgPPGPahzlOhaFmOhWP_raUvnTOeOkbJDS_AavdqYI</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Ciatto, Stefano</creator><creator>Bernardi, Daniela</creator><creator>Calabrese, Massimo</creator><creator>Durando, Manuela</creator><creator>Gentilini, Maria Adalgisa</creator><creator>Mariscotti, Giovanna</creator><creator>Monetti, Francesco</creator><creator>Moriconi, Enrica</creator><creator>Pesce, Barbara</creator><creator>Roselli, Antonella</creator><creator>Stevanin, Carmen</creator><creator>Tapparelli, Margherita</creator><creator>Houssami, Nehmat</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><author>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Computer assessment</topic><topic>Female</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Middle Aged</topic><topic>Observer Variation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiological density</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciatto, Stefano</creatorcontrib><creatorcontrib>Bernardi, Daniela</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Durando, Manuela</creatorcontrib><creatorcontrib>Gentilini, Maria Adalgisa</creatorcontrib><creatorcontrib>Mariscotti, Giovanna</creatorcontrib><creatorcontrib>Monetti, Francesco</creatorcontrib><creatorcontrib>Moriconi, Enrica</creatorcontrib><creatorcontrib>Pesce, Barbara</creatorcontrib><creatorcontrib>Roselli, Antonella</creatorcontrib><creatorcontrib>Stevanin, Carmen</creatorcontrib><creatorcontrib>Tapparelli, Margherita</creatorcontrib><creatorcontrib>Houssami, Nehmat</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Breast (Edinburgh)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciatto, Stefano</au><au>Bernardi, Daniela</au><au>Calabrese, Massimo</au><au>Durando, Manuela</au><au>Gentilini, Maria Adalgisa</au><au>Mariscotti, Giovanna</au><au>Monetti, Francesco</au><au>Moriconi, Enrica</au><au>Pesce, Barbara</au><au>Roselli, Antonella</au><au>Stevanin, Carmen</au><au>Tapparelli, Margherita</au><au>Houssami, Nehmat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</atitle><jtitle>Breast (Edinburgh)</jtitle><addtitle>Breast</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>503</spage><epage>506</epage><pages>503-506</pages><issn>0960-9776</issn><eissn>1532-3080</eissn><abstract>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22285387</pmid><doi>10.1016/j.breast.2012.01.005</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9776
ispartof Breast (Edinburgh), 2012-08, Vol.21 (4), p.503-506
issn 0960-9776
1532-3080
language eng
recordid cdi_proquest_miscellaneous_1026689125
source ScienceDirect Freedom Collection 2022-2024
subjects Adult
Aged
Aged, 80 and over
Breast Neoplasms - diagnostic imaging
Computer assessment
Female
Hematology, Oncology and Palliative Medicine
Humans
Mammography
Mammography - methods
Middle Aged
Observer Variation
Radiographic Image Interpretation, Computer-Assisted - methods
Radiological density
Reproducibility of Results
Software
title A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first%20evaluation%20of%20breast%20radiological%20density%20assessment%20by%20QUANTRA%20software%20as%20compared%20to%20visual%20classification&rft.jtitle=Breast%20(Edinburgh)&rft.au=Ciatto,%20Stefano&rft.date=2012-08-01&rft.volume=21&rft.issue=4&rft.spage=503&rft.epage=506&rft.pages=503-506&rft.issn=0960-9776&rft.eissn=1532-3080&rft_id=info:doi/10.1016/j.breast.2012.01.005&rft_dat=%3Cproquest_cross%3E1026689125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1026689125&rft_id=info:pmid/22285387&rfr_iscdi=true