Loading…
A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification
Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammogr...
Saved in:
Published in: | Breast (Edinburgh) 2012-08, Vol.21 (4), p.503-506 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863 |
container_end_page | 506 |
container_issue | 4 |
container_start_page | 503 |
container_title | Breast (Edinburgh) |
container_volume | 21 |
creator | Ciatto, Stefano Bernardi, Daniela Calabrese, Massimo Durando, Manuela Gentilini, Maria Adalgisa Mariscotti, Giovanna Monetti, Francesco Moriconi, Enrica Pesce, Barbara Roselli, Antonella Stevanin, Carmen Tapparelli, Margherita Houssami, Nehmat |
description | Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed. |
doi_str_mv | 10.1016/j.breast.2012.01.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1026689125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960977612000070</els_id><sourcerecordid>1026689125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCP0DIRy4JY2djOxekVVWgUgUC2rPl2BPkJRsvtrNo_z2OUjhw4eSR_N4bzfcIecWgZsDE233dRzQp1xwYr4HVAO0TsmFtw6sGFDwlG-gEVJ2U4oJcprQHgK4R6jm54JyrtlFyQ-YdHXxMmeLJjLPJPkw0DHSNptE4H8bw3VszUodT8vlMTUqY0gGnTPsz_fKw-3T_dUdTGPIvE7F8UxsOxzI6mgM9-TQXsx2LzQ8laFnxgjwbzJjw5eN7RR7e39xff6zuPn-4vd7dVbblXa4aIyXYwbStGbDrXctcZ-wAslVyK7eqF045zrhi0G-VLJdb1zHsjEAQXInmirxZc48x_JwxZX3wyeI4mgnDnDQDLoTqGG-LdLtKbQwpRRz0MfqDieci0gtwvdcrFb0A18B0AV5srx83zP0B3V_TH8JF8G4VYLnz5DHqZD1OFp2PaLN2wf9vw78BdvTT0sgPPGPahzlOhaFmOhWP_raUvnTOeOkbJDS_AavdqYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026689125</pqid></control><display><type>article</type><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</creator><creatorcontrib>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</creatorcontrib><description>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</description><identifier>ISSN: 0960-9776</identifier><identifier>EISSN: 1532-3080</identifier><identifier>DOI: 10.1016/j.breast.2012.01.005</identifier><identifier>PMID: 22285387</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Breast Neoplasms - diagnostic imaging ; Computer assessment ; Female ; Hematology, Oncology and Palliative Medicine ; Humans ; Mammography ; Mammography - methods ; Middle Aged ; Observer Variation ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiological density ; Reproducibility of Results ; Software</subject><ispartof>Breast (Edinburgh), 2012-08, Vol.21 (4), p.503-506</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</citedby><cites>FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22285387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciatto, Stefano</creatorcontrib><creatorcontrib>Bernardi, Daniela</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Durando, Manuela</creatorcontrib><creatorcontrib>Gentilini, Maria Adalgisa</creatorcontrib><creatorcontrib>Mariscotti, Giovanna</creatorcontrib><creatorcontrib>Monetti, Francesco</creatorcontrib><creatorcontrib>Moriconi, Enrica</creatorcontrib><creatorcontrib>Pesce, Barbara</creatorcontrib><creatorcontrib>Roselli, Antonella</creatorcontrib><creatorcontrib>Stevanin, Carmen</creatorcontrib><creatorcontrib>Tapparelli, Margherita</creatorcontrib><creatorcontrib>Houssami, Nehmat</creatorcontrib><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><title>Breast (Edinburgh)</title><addtitle>Breast</addtitle><description>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Computer assessment</subject><subject>Female</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Middle Aged</subject><subject>Observer Variation</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiological density</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>0960-9776</issn><issn>1532-3080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EotvCP0DIRy4JY2djOxekVVWgUgUC2rPl2BPkJRsvtrNo_z2OUjhw4eSR_N4bzfcIecWgZsDE233dRzQp1xwYr4HVAO0TsmFtw6sGFDwlG-gEVJ2U4oJcprQHgK4R6jm54JyrtlFyQ-YdHXxMmeLJjLPJPkw0DHSNptE4H8bw3VszUodT8vlMTUqY0gGnTPsz_fKw-3T_dUdTGPIvE7F8UxsOxzI6mgM9-TQXsx2LzQ8laFnxgjwbzJjw5eN7RR7e39xff6zuPn-4vd7dVbblXa4aIyXYwbStGbDrXctcZ-wAslVyK7eqF045zrhi0G-VLJdb1zHsjEAQXInmirxZc48x_JwxZX3wyeI4mgnDnDQDLoTqGG-LdLtKbQwpRRz0MfqDieci0gtwvdcrFb0A18B0AV5srx83zP0B3V_TH8JF8G4VYLnz5DHqZD1OFp2PaLN2wf9vw78BdvTT0sgPPGPahzlOhaFmOhWP_raUvnTOeOkbJDS_AavdqYI</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Ciatto, Stefano</creator><creator>Bernardi, Daniela</creator><creator>Calabrese, Massimo</creator><creator>Durando, Manuela</creator><creator>Gentilini, Maria Adalgisa</creator><creator>Mariscotti, Giovanna</creator><creator>Monetti, Francesco</creator><creator>Moriconi, Enrica</creator><creator>Pesce, Barbara</creator><creator>Roselli, Antonella</creator><creator>Stevanin, Carmen</creator><creator>Tapparelli, Margherita</creator><creator>Houssami, Nehmat</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</title><author>Ciatto, Stefano ; Bernardi, Daniela ; Calabrese, Massimo ; Durando, Manuela ; Gentilini, Maria Adalgisa ; Mariscotti, Giovanna ; Monetti, Francesco ; Moriconi, Enrica ; Pesce, Barbara ; Roselli, Antonella ; Stevanin, Carmen ; Tapparelli, Margherita ; Houssami, Nehmat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Computer assessment</topic><topic>Female</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Middle Aged</topic><topic>Observer Variation</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiological density</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciatto, Stefano</creatorcontrib><creatorcontrib>Bernardi, Daniela</creatorcontrib><creatorcontrib>Calabrese, Massimo</creatorcontrib><creatorcontrib>Durando, Manuela</creatorcontrib><creatorcontrib>Gentilini, Maria Adalgisa</creatorcontrib><creatorcontrib>Mariscotti, Giovanna</creatorcontrib><creatorcontrib>Monetti, Francesco</creatorcontrib><creatorcontrib>Moriconi, Enrica</creatorcontrib><creatorcontrib>Pesce, Barbara</creatorcontrib><creatorcontrib>Roselli, Antonella</creatorcontrib><creatorcontrib>Stevanin, Carmen</creatorcontrib><creatorcontrib>Tapparelli, Margherita</creatorcontrib><creatorcontrib>Houssami, Nehmat</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Breast (Edinburgh)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciatto, Stefano</au><au>Bernardi, Daniela</au><au>Calabrese, Massimo</au><au>Durando, Manuela</au><au>Gentilini, Maria Adalgisa</au><au>Mariscotti, Giovanna</au><au>Monetti, Francesco</au><au>Moriconi, Enrica</au><au>Pesce, Barbara</au><au>Roselli, Antonella</au><au>Stevanin, Carmen</au><au>Tapparelli, Margherita</au><au>Houssami, Nehmat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification</atitle><jtitle>Breast (Edinburgh)</jtitle><addtitle>Breast</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>503</spage><epage>506</epage><pages>503-506</pages><issn>0960-9776</issn><eissn>1532-3080</eissn><abstract>Abstract Breast radiological density is a determinant of breast cancer risk and of mammography sensitivity and may be used to personalize screening approach. We first analyzed the reproducibility of visual density assessment by eleven experienced radiologists classifying a set of 418 digital mammograms: reproducibility was satisfactory on a four (BI-RADS D1–2–3–4: weighted kappa = 0.694–0.844) and on a two grade (D1-2 vs D3-4: kappa = 0.620–0.851), but subjects classified as with dense breast would range between 25.1 and 50.5% depending on the classifying reader. Breast density was then assessed by computer using the QUANTRA software which provided systematically lower density percentage values as compared to visual classification. In order to predict visual classification results in discriminating dense and non-dense breast subjects on a two grade scale (D3-4 vs, D1-2) the best fitting cut off value observed for QUANTRA was ≤22.0%, which correctly predicted 88.6% of D1-2, 89.8% of D3-4, and 89.0% of total cases. Computer assessed breast density is absolutely reproducible, and thus to be preferred to visual classification. Thus far few studies have addressed the issue of adjusting computer assessed density to reproduce visual classification, and more similar comparative studies are needed.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22285387</pmid><doi>10.1016/j.breast.2012.01.005</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9776 |
ispartof | Breast (Edinburgh), 2012-08, Vol.21 (4), p.503-506 |
issn | 0960-9776 1532-3080 |
language | eng |
recordid | cdi_proquest_miscellaneous_1026689125 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adult Aged Aged, 80 and over Breast Neoplasms - diagnostic imaging Computer assessment Female Hematology, Oncology and Palliative Medicine Humans Mammography Mammography - methods Middle Aged Observer Variation Radiographic Image Interpretation, Computer-Assisted - methods Radiological density Reproducibility of Results Software |
title | A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first%20evaluation%20of%20breast%20radiological%20density%20assessment%20by%20QUANTRA%20software%20as%20compared%20to%20visual%20classification&rft.jtitle=Breast%20(Edinburgh)&rft.au=Ciatto,%20Stefano&rft.date=2012-08-01&rft.volume=21&rft.issue=4&rft.spage=503&rft.epage=506&rft.pages=503-506&rft.issn=0960-9776&rft.eissn=1532-3080&rft_id=info:doi/10.1016/j.breast.2012.01.005&rft_dat=%3Cproquest_cross%3E1026689125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-3a770cfa55afe9bd51d9acf075874748b6d8d212810b487532cd91e9a6e062863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1026689125&rft_id=info:pmid/22285387&rfr_iscdi=true |