Loading…
Effects of miltefosine on the proliferation, ultrastructure, and phospholipid composition of Angomonas deanei, a trypanosomatid protozoan that harbors a symbiotic bacterium
Abstract Some trypanosomatids, such as Angomonas deanei formerly named as Crithidia deanei, present an obligatory intracellular bacterium, which maintains a mutualistic relationship with the host. Phosphatidylcholine (PC) is the major phospholipid in eukaryotes and an essential component of cell mem...
Saved in:
Published in: | FEMS microbiology letters 2012-08, Vol.333 (2), p.129-137 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Some trypanosomatids, such as Angomonas deanei formerly named as Crithidia deanei, present an obligatory intracellular bacterium, which maintains a mutualistic relationship with the host. Phosphatidylcholine (PC) is the major phospholipid in eukaryotes and an essential component of cell membranes playing structural, biochemical, and physiological roles. However, in prokaryotes, PC is present only in those species closely associated with eukaryotes, either in symbiotic or pathogenic interactions. In trypanosomatids, the endosymbiont envelope is composed by a reduced cell wall and by two membrane units that lack sterols and present cardiolipin (CL) and PC as the major phospholipids. In this study, we tested the effects of miltefosine in A. deanei proliferation, as well as, on the ultrastrucuture and phospholipid composition considering that this drug inhibits the CTP-phosphocholine cytidyltransferase (CCT), a key enzyme in the PC biosynthesis. Besides the low effect of miltefosine in cellular proliferation, treated protozoa presented ultrastructural alterations such as plasma membrane shedding and blebbing, mitochondrial swelling, and convolutions of the endosymbiont envelope. The use of 32Pi as a tracer revealed that the production of PC, CL, and phosphatidylethanolamine decreased while phosphatidylinositol production remained stable. Mitochondrion and symbiont fractions obtained from protozoa treated with miltefosine also presented a decrease in phospholipid production, reinforcing the idea that an intensive metabolic exchange occurs between the host trypanosomatid and structures of symbiotic origin. |
---|---|
ISSN: | 0378-1097 1574-6968 |
DOI: | 10.1111/j.1574-6968.2012.02607.x |