Loading…

Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana

Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expressio...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2002-11, Vol.216 (1), p.107-119
Main Authors: Kolukisaoglu, H. Üner, Bovet, Lucien, Klein, Markus, Eggmann, Thomas, Geisler, Markus, Wanke, Dierk, Martinoia, Enrico, Schulz, Burkhard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein (MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-002-0890-6