Loading…

Unexpected consequences of a sudden and massive transposon amplification on rice gene expression

High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare i...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2009-10, Vol.461 (7267), p.1130-1134
Main Authors: Naito, Ken, Zhang, Feng, Tsukiyama, Takuji, Saito, Hiroki, Hancock, C. Nathan, Richardson, Aaron O, Okumoto, Yutaka, Tanisaka, Takatoshi, Wessler, Susan R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83
cites cdi_FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83
container_end_page 1134
container_issue 7267
container_start_page 1130
container_title Nature (London)
container_volume 461
creator Naito, Ken
Zhang, Feng
Tsukiyama, Takuji
Saito, Hiroki
Hancock, C. Nathan
Richardson, Aaron O
Okumoto, Yutaka
Tanisaka, Takatoshi
Wessler, Susan R
description High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.
doi_str_mv 10.1038/nature08479
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1028019241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A211236173</galeid><sourcerecordid>A211236173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83</originalsourceid><addsrcrecordid>eNp10u9r1DAYB_Aiijunr3yvZTJQtDNJc0378jj8MRgKbocvYy55cmS0SZe0Mv_7PccdbieVFkrST75tnjxZ9pKSM0rK-qNXwxiB1Fw0j7IZ5aIqeFWLx9mMEFYXpC6ro-xZSteEkDkV_Gl2RBvUrKpm2a-Vh9se9AAm18EnuBnBa0h5sLnK02gM-Fx5k3cqJfcb8iEqn_qQAk53feus02pwOMI7Og35BjzkmBkBFwT_PHtiVZvgxf55nK0-f7pafi0uvn85Xy4uCl1xOhRa1IoIVgprScmIKA213DTalLA2dTMXWvO1agibA1R1A9owUEKRNeO0Uqouj7O3u9w-BtxDGmTnkoa2VR7CmCTFWhDaIEd68g-9DmP0-HeSET4ntOQc0Zsd2qgWpPM24M71NlMuGKWsrKgoURUTaluCqNrgwTqcPvAnE1737kY-RGcTCC8DndOTqe8OFqAZ4HbYqDEleX7549C-_79dXP1cfpvUOoaUIljZR9ep-AfrKbfdJx90H-pX-8KO6w7Mvd23G4LTPVBJq9ZiL2mX_jrGCCMV3Rb_w84lfOU3EO9PaPq7r3fcqiDVJmLk6pLhORIqKCENL-8Aod_2yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204501344</pqid></control><display><type>article</type><title>Unexpected consequences of a sudden and massive transposon amplification on rice gene expression</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Naito, Ken ; Zhang, Feng ; Tsukiyama, Takuji ; Saito, Hiroki ; Hancock, C. Nathan ; Richardson, Aaron O ; Okumoto, Yutaka ; Tanisaka, Takatoshi ; Wessler, Susan R</creator><creatorcontrib>Naito, Ken ; Zhang, Feng ; Tsukiyama, Takuji ; Saito, Hiroki ; Hancock, C. Nathan ; Richardson, Aaron O ; Okumoto, Yutaka ; Tanisaka, Takatoshi ; Wessler, Susan R</creatorcontrib><description>High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08479</identifier><identifier>PMID: 19847266</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>5' Flanking Region - genetics ; Agronomy. Soil science and plant productions ; Alleles ; Analysis ; Arabidopsis - genetics ; Biological and medical sciences ; Cold Temperature ; Comparative analysis ; DNA Copy Number Variations - genetics ; DNA Transposable Elements - genetics ; Exons ; Fundamental and applied biological sciences. Psychology ; gene amplification ; Gene Amplification - genetics ; gene dosage ; Gene Dosage - genetics ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; Genetic aspects ; Genetic diversity ; Genetic transcription ; Genetics and breeding of economic plants ; Genomics ; Humanities and Social Sciences ; letter ; Life sciences ; messenger RNA ; microarray technology ; multidisciplinary ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames - genetics ; Oryza - genetics ; Oryza sativa ; Preferences ; Promoter Regions, Genetic - genetics ; Rice ; Science ; Science (multidisciplinary) ; Stress, Physiological - genetics ; Transgenes - genetics ; transposon copy number ; transposon insertions ; Transposons</subject><ispartof>Nature (London), 2009-10, Vol.461 (7267), p.1130-1134</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 22, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83</citedby><cites>FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22020614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19847266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naito, Ken</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tsukiyama, Takuji</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Hancock, C. Nathan</creatorcontrib><creatorcontrib>Richardson, Aaron O</creatorcontrib><creatorcontrib>Okumoto, Yutaka</creatorcontrib><creatorcontrib>Tanisaka, Takatoshi</creatorcontrib><creatorcontrib>Wessler, Susan R</creatorcontrib><title>Unexpected consequences of a sudden and massive transposon amplification on rice gene expression</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.</description><subject>5' Flanking Region - genetics</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>Cold Temperature</subject><subject>Comparative analysis</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA Transposable Elements - genetics</subject><subject>Exons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene amplification</subject><subject>Gene Amplification - genetics</subject><subject>gene dosage</subject><subject>Gene Dosage - genetics</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic transcription</subject><subject>Genetics and breeding of economic plants</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Life sciences</subject><subject>messenger RNA</subject><subject>microarray technology</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Open Reading Frames - genetics</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Preferences</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rice</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress, Physiological - genetics</subject><subject>Transgenes - genetics</subject><subject>transposon copy number</subject><subject>transposon insertions</subject><subject>Transposons</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10u9r1DAYB_Aiijunr3yvZTJQtDNJc0378jj8MRgKbocvYy55cmS0SZe0Mv_7PccdbieVFkrST75tnjxZ9pKSM0rK-qNXwxiB1Fw0j7IZ5aIqeFWLx9mMEFYXpC6ro-xZSteEkDkV_Gl2RBvUrKpm2a-Vh9se9AAm18EnuBnBa0h5sLnK02gM-Fx5k3cqJfcb8iEqn_qQAk53feus02pwOMI7Og35BjzkmBkBFwT_PHtiVZvgxf55nK0-f7pafi0uvn85Xy4uCl1xOhRa1IoIVgprScmIKA213DTalLA2dTMXWvO1agibA1R1A9owUEKRNeO0Uqouj7O3u9w-BtxDGmTnkoa2VR7CmCTFWhDaIEd68g-9DmP0-HeSET4ntOQc0Zsd2qgWpPM24M71NlMuGKWsrKgoURUTaluCqNrgwTqcPvAnE1737kY-RGcTCC8DndOTqe8OFqAZ4HbYqDEleX7549C-_79dXP1cfpvUOoaUIljZR9ep-AfrKbfdJx90H-pX-8KO6w7Mvd23G4LTPVBJq9ZiL2mX_jrGCCMV3Rb_w84lfOU3EO9PaPq7r3fcqiDVJmLk6pLhORIqKCENL-8Aod_2yQ</recordid><startdate>20091022</startdate><enddate>20091022</enddate><creator>Naito, Ken</creator><creator>Zhang, Feng</creator><creator>Tsukiyama, Takuji</creator><creator>Saito, Hiroki</creator><creator>Hancock, C. Nathan</creator><creator>Richardson, Aaron O</creator><creator>Okumoto, Yutaka</creator><creator>Tanisaka, Takatoshi</creator><creator>Wessler, Susan R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20091022</creationdate><title>Unexpected consequences of a sudden and massive transposon amplification on rice gene expression</title><author>Naito, Ken ; Zhang, Feng ; Tsukiyama, Takuji ; Saito, Hiroki ; Hancock, C. Nathan ; Richardson, Aaron O ; Okumoto, Yutaka ; Tanisaka, Takatoshi ; Wessler, Susan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>5' Flanking Region - genetics</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>Cold Temperature</topic><topic>Comparative analysis</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA Transposable Elements - genetics</topic><topic>Exons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene amplification</topic><topic>Gene Amplification - genetics</topic><topic>gene dosage</topic><topic>Gene Dosage - genetics</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic transcription</topic><topic>Genetics and breeding of economic plants</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Life sciences</topic><topic>messenger RNA</topic><topic>microarray technology</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Open Reading Frames - genetics</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Preferences</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rice</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress, Physiological - genetics</topic><topic>Transgenes - genetics</topic><topic>transposon copy number</topic><topic>transposon insertions</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naito, Ken</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Tsukiyama, Takuji</creatorcontrib><creatorcontrib>Saito, Hiroki</creatorcontrib><creatorcontrib>Hancock, C. Nathan</creatorcontrib><creatorcontrib>Richardson, Aaron O</creatorcontrib><creatorcontrib>Okumoto, Yutaka</creatorcontrib><creatorcontrib>Tanisaka, Takatoshi</creatorcontrib><creatorcontrib>Wessler, Susan R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naito, Ken</au><au>Zhang, Feng</au><au>Tsukiyama, Takuji</au><au>Saito, Hiroki</au><au>Hancock, C. Nathan</au><au>Richardson, Aaron O</au><au>Okumoto, Yutaka</au><au>Tanisaka, Takatoshi</au><au>Wessler, Susan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected consequences of a sudden and massive transposon amplification on rice gene expression</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-10-22</date><risdate>2009</risdate><volume>461</volume><issue>7267</issue><spage>1130</spage><epage>1134</epage><pages>1130-1134</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19847266</pmid><doi>10.1038/nature08479</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2009-10, Vol.461 (7267), p.1130-1134
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1028019241
source Springer Nature - Connect here FIRST to enable access
subjects 5' Flanking Region - genetics
Agronomy. Soil science and plant productions
Alleles
Analysis
Arabidopsis - genetics
Biological and medical sciences
Cold Temperature
Comparative analysis
DNA Copy Number Variations - genetics
DNA Transposable Elements - genetics
Exons
Fundamental and applied biological sciences. Psychology
gene amplification
Gene Amplification - genetics
gene dosage
Gene Dosage - genetics
Gene expression
gene expression regulation
Gene Expression Regulation, Plant
genes
Genetic aspects
Genetic diversity
Genetic transcription
Genetics and breeding of economic plants
Genomics
Humanities and Social Sciences
letter
Life sciences
messenger RNA
microarray technology
multidisciplinary
Oligonucleotide Array Sequence Analysis
Open Reading Frames - genetics
Oryza - genetics
Oryza sativa
Preferences
Promoter Regions, Genetic - genetics
Rice
Science
Science (multidisciplinary)
Stress, Physiological - genetics
Transgenes - genetics
transposon copy number
transposon insertions
Transposons
title Unexpected consequences of a sudden and massive transposon amplification on rice gene expression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20consequences%20of%20a%20sudden%20and%20massive%20transposon%20amplification%20on%20rice%20gene%20expression&rft.jtitle=Nature%20(London)&rft.au=Naito,%20Ken&rft.date=2009-10-22&rft.volume=461&rft.issue=7267&rft.spage=1130&rft.epage=1134&rft.pages=1130-1134&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature08479&rft_dat=%3Cgale_proqu%3EA211236173%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-c78a07237ff032073d1f4d9cd3ebd8957cc4ba9025ee689ecd2ea7a0b2416aa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204501344&rft_id=info:pmid/19847266&rft_galeid=A211236173&rfr_iscdi=true